skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kootenay Lake Fertilization Experiment; Years 11 and 12, Technical Report 2002-2003.

Abstract

This report examines the results from the eleventh and twelfth years (2002 and 2003) of the Kootenay Lake fertilization experiment. Experimental fertilization has occurred with an adaptive management approach since 1992 in order to restore productivity lost as a result of upstream dams. One of the main objectives of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are a main food source for Gerrard rainbow trout (Oncorhynchus mykiss). Kootenay Lake is located between the Selkirk and Purcell mountains in southeastern British Columbia. It has an area of 395 km2, a maximum depth of 150 m, a mean depth of 94 m, and a water renewal time of approximately two years. The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to Kootenay Lake in 2002 and 2003 was similar to that added from 1992 to 1996. After four years of decreased fertilizer loading (1997 to 2000), results indicated that kokanee populations had declined, and the decision was made to increase the loads again in 2001. The total load of fertilizer in 2002 was 47.1 tonnes of phosphorus and 206.7 tonnes of nitrogen. The total fertilizer load in 2003 was 47.1 tonnes ofmore » phosphorus and 240.8 tonnes of nitrogen. Additional nitrogen was added in 2003 to compensate for nitrogen depletion in the epilimnion. The fertilizer was applied to a 10 km stretch in the North Arm from 3 km south of Lardeau to 3 km south of Schroeder Creek. The maximum surface water temperature in 2002, measured on July 22, was 22 C in the North Arm and 21.3 C in the South Arm. In 2003, the maxima were recorded on August 5 at 20.6 C in the North Arm and on September 2 at 19.7 C in the South Arm. The maximum water temperature in the West Arm was 18.7 C on September 2, 2003. Kootenay Lake had oxygen-saturated water throughout the sampling season with values ranging from about 11-16 mg/L in 2002 and 2003. In both years, Secchi depth followed the expected pattern for an oligo-mesotrophic lake of decreasing in May, June, and early July, concurrent with the spring phytoplankton bloom, and clearing again as the summer progressed. Total phosphorus (TP) ranged from 2-11 {micro}g/L in 2002 and 2-21 {micro}g/L in 2003. With average TP values generally in the range of 3-10 {micro}g/L, Kootenay Lake is considered to be an oligotrophic to oligo-mesotrophic lake. Total dissolved phosphorus (TDP) followed the same seasonal trends as TP in 2002 and 2003 and ranged from 2-7 {micro}g/L in 2002 and from 2-10 {micro}g/L in 2003. Total nitrogen (TN) ranged from 90-380 {micro}g/L in 2002 and 100-210 {micro}g/L in 2003. During both the 2002 and 2003 sampling seasons, TN showed an overall decline in concentration with mid-summer and fall increases at some stations, which is consistent with previous years results. Dissolved inorganic nitrogen (DIN) concentrations showed a more pronounced declining trend over the sampling season compared with TN, corresponding to nitrate (the dominant component of DIN) being used by phytoplankton during summer stratification. DIN ranged from 7-176 {micro}g/L in 2002 and from 8-147 {micro}g/L in 2003. During 2003, discrete depth sampling occurred, and a more detailed look at the nitrate concentrations in the epilimnion was undertaken. There was a seasonal decline in nitrate concentrations, which supports the principle of increasing the nitrogen loading and the nitrogen to phosphorus (N:P) ratio during the fertilizer application period. Chlorophyll a (Chl a) concentrations in Kootenay Lake were in the range of 1.4-5.1 {micro}g/L in 2002 and 0.5-4.9 {micro}g/L in 2003. Over the sampling season, Chl a at North Arm stations generally increased in spring corresponding with the phytoplankton bloom, decreased during the summer, and increased again in the fall with mixing of the water column. The trend was similar, but less pronounced, at South Arm stations in these years, and spring Chl a concentrations were lower. During 2002, total algal biomass averaged during June, July and August was lower in the North Arm than the South Arm. This was the first time this occurred since the commencement of the North Arm fertilization experiment. Results in 2002 indicated Kootenay lake continues to be a diatom dominated lake (80 to 89% of the total average biomass). The overall trend observed throughout the 2003 sampling season was one of a slight decline in algal biomass from the North Arm stations towards those in the South Arm. Kootenay Lake continued to be a diatom-dominated lake (76-83% of total average biomass). Synedra spp. and some Asterionella, as in the previous three years, dominated the early biomass increase in 2003, but the peak biomass in July was largely due to Tabellaria.« less

Authors:
Publication Date:
Research Org.:
Bonneville Power Administration (BPA), Portland, OR (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
963293
Report Number(s):
DOe/BP-00004029-5
TRN: US200917%%506
DOE Contract Number:  
4029
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
13 HYDRO ENERGY; AMMONIUM NITRATES; BIOMASS; CHLOROPHYLL; DAMS; DIATOMS; FERTILIZATION; FERTILIZERS; FOOD; NITRATES; NITROGEN; PHOSPHORUS; PHYTOPLANKTON; PRODUCTIVITY; SAMPLING; SEASONS; STRATIFICATION; SURFACE WATERS; TROUT; UREA

Citation Formats

Schindler, E. Kootenay Lake Fertilization Experiment; Years 11 and 12, Technical Report 2002-2003.. United States: N. p., 2007. Web. doi:10.2172/963293.
Schindler, E. Kootenay Lake Fertilization Experiment; Years 11 and 12, Technical Report 2002-2003.. United States. doi:10.2172/963293.
Schindler, E. Thu . "Kootenay Lake Fertilization Experiment; Years 11 and 12, Technical Report 2002-2003.". United States. doi:10.2172/963293. https://www.osti.gov/servlets/purl/963293.
@article{osti_963293,
title = {Kootenay Lake Fertilization Experiment; Years 11 and 12, Technical Report 2002-2003.},
author = {Schindler, E.},
abstractNote = {This report examines the results from the eleventh and twelfth years (2002 and 2003) of the Kootenay Lake fertilization experiment. Experimental fertilization has occurred with an adaptive management approach since 1992 in order to restore productivity lost as a result of upstream dams. One of the main objectives of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are a main food source for Gerrard rainbow trout (Oncorhynchus mykiss). Kootenay Lake is located between the Selkirk and Purcell mountains in southeastern British Columbia. It has an area of 395 km2, a maximum depth of 150 m, a mean depth of 94 m, and a water renewal time of approximately two years. The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to Kootenay Lake in 2002 and 2003 was similar to that added from 1992 to 1996. After four years of decreased fertilizer loading (1997 to 2000), results indicated that kokanee populations had declined, and the decision was made to increase the loads again in 2001. The total load of fertilizer in 2002 was 47.1 tonnes of phosphorus and 206.7 tonnes of nitrogen. The total fertilizer load in 2003 was 47.1 tonnes of phosphorus and 240.8 tonnes of nitrogen. Additional nitrogen was added in 2003 to compensate for nitrogen depletion in the epilimnion. The fertilizer was applied to a 10 km stretch in the North Arm from 3 km south of Lardeau to 3 km south of Schroeder Creek. The maximum surface water temperature in 2002, measured on July 22, was 22 C in the North Arm and 21.3 C in the South Arm. In 2003, the maxima were recorded on August 5 at 20.6 C in the North Arm and on September 2 at 19.7 C in the South Arm. The maximum water temperature in the West Arm was 18.7 C on September 2, 2003. Kootenay Lake had oxygen-saturated water throughout the sampling season with values ranging from about 11-16 mg/L in 2002 and 2003. In both years, Secchi depth followed the expected pattern for an oligo-mesotrophic lake of decreasing in May, June, and early July, concurrent with the spring phytoplankton bloom, and clearing again as the summer progressed. Total phosphorus (TP) ranged from 2-11 {micro}g/L in 2002 and 2-21 {micro}g/L in 2003. With average TP values generally in the range of 3-10 {micro}g/L, Kootenay Lake is considered to be an oligotrophic to oligo-mesotrophic lake. Total dissolved phosphorus (TDP) followed the same seasonal trends as TP in 2002 and 2003 and ranged from 2-7 {micro}g/L in 2002 and from 2-10 {micro}g/L in 2003. Total nitrogen (TN) ranged from 90-380 {micro}g/L in 2002 and 100-210 {micro}g/L in 2003. During both the 2002 and 2003 sampling seasons, TN showed an overall decline in concentration with mid-summer and fall increases at some stations, which is consistent with previous years results. Dissolved inorganic nitrogen (DIN) concentrations showed a more pronounced declining trend over the sampling season compared with TN, corresponding to nitrate (the dominant component of DIN) being used by phytoplankton during summer stratification. DIN ranged from 7-176 {micro}g/L in 2002 and from 8-147 {micro}g/L in 2003. During 2003, discrete depth sampling occurred, and a more detailed look at the nitrate concentrations in the epilimnion was undertaken. There was a seasonal decline in nitrate concentrations, which supports the principle of increasing the nitrogen loading and the nitrogen to phosphorus (N:P) ratio during the fertilizer application period. Chlorophyll a (Chl a) concentrations in Kootenay Lake were in the range of 1.4-5.1 {micro}g/L in 2002 and 0.5-4.9 {micro}g/L in 2003. Over the sampling season, Chl a at North Arm stations generally increased in spring corresponding with the phytoplankton bloom, decreased during the summer, and increased again in the fall with mixing of the water column. The trend was similar, but less pronounced, at South Arm stations in these years, and spring Chl a concentrations were lower. During 2002, total algal biomass averaged during June, July and August was lower in the North Arm than the South Arm. This was the first time this occurred since the commencement of the North Arm fertilization experiment. Results in 2002 indicated Kootenay lake continues to be a diatom dominated lake (80 to 89% of the total average biomass). The overall trend observed throughout the 2003 sampling season was one of a slight decline in algal biomass from the North Arm stations towards those in the South Arm. Kootenay Lake continued to be a diatom-dominated lake (76-83% of total average biomass). Synedra spp. and some Asterionella, as in the previous three years, dominated the early biomass increase in 2003, but the peak biomass in July was largely due to Tabellaria.},
doi = {10.2172/963293},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 01 00:00:00 EST 2007},
month = {Thu Feb 01 00:00:00 EST 2007}
}

Technical Report:

Save / Share: