skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.

Abstract

This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN)more » concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions. Dissolved inorganic nitrogen concentrations have decreased in 2002 and 2003 compared to previous years. These results indicate that the surface waters in Arrow Lakes Reservoir were approaching nitrogen limitation. Results from the 2003 discrete profile series indicate nitrate concentrations decreased significantly below 25 {micro}g/L (which is the concentration where nitrate is considered limiting to phytoplankton) between June and July at stations in Upper Arrow and Lower Arrow. Nitrogen to phosphorus ratios (weight:weight) were also low during these months indicating that the surface waters were nitrogen deficient. These results indicated that the nitrogen to phosphorus blends of fertilizer added to the reservoir need to be fine tuned and closely monitored on a weekly basis in future years of nutrient addition. Phytoplankton results shifted during 2002 and 2003 compared to previous years. During 2002, there was a co-dominance of potentially 'inedible' diatoms (Fragilaria spp. and Diatoma) and 'greens' (Ulothrix). Large diatom populations occurred in 2003 and these results indicate it may be necessary to alter the frequency and amounts of weekly loads of nitrogen and phosphorus in future years to prevent the growth of inedible diatoms. Zooplankton density in 2002 and 2003, as in previous years, indicated higher densities in Lower Arrow than in Upper Arrow. Copepods and other Cladocera (mainly tiny specimens such as Bosmina sp.) had distinct peaks, higher than in previous years, while Daphnia was not present in higher numbers particularly in Upper Arrow. This density shift in favor to smaller cladocerans was mirrored in a weak biomass increase. In Upper Arrow, total zooplankton biomass decreased from 1999 to 2002, and in 2003 increased slightly, while in Lower Arrow the biomass decreased from 2000-2002. In Lower Arrow the majority of biomass was comprised of Daphnia throughout the study period except in 2002, while in Upper Arrow the total biomass was comprised of copepods from 2000-2003.« less

Authors:
Publication Date:
Research Org.:
Bonneville Power Administration (BPA), Portland, OR (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
963292
Report Number(s):
DOE/BP-00004029-4
TRN: US200917%%505
DOE Contract Number:
4029
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
13 HYDRO ENERGY; BIOMASS; COPEPODS; DAPHNIA; DIATOMS; FERTILIZATION; FERTILIZERS; METRICS; NITRATES; NITROGEN; NUTRIENTS; PHOSPHORUS; PHYTOPLANKTON; RIVERS; SALMON; SNOW; SURFACE WATERS; WATER; WATER CHEMISTRY; ZOOPLANKTON

Citation Formats

Schindler, E. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.. United States: N. p., 2007. Web. doi:10.2172/963292.
Schindler, E. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.. United States. doi:10.2172/963292.
Schindler, E. Thu . "Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.". United States. doi:10.2172/963292. https://www.osti.gov/servlets/purl/963292.
@article{osti_963292,
title = {Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.},
author = {Schindler, E.},
abstractNote = {This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions. Dissolved inorganic nitrogen concentrations have decreased in 2002 and 2003 compared to previous years. These results indicate that the surface waters in Arrow Lakes Reservoir were approaching nitrogen limitation. Results from the 2003 discrete profile series indicate nitrate concentrations decreased significantly below 25 {micro}g/L (which is the concentration where nitrate is considered limiting to phytoplankton) between June and July at stations in Upper Arrow and Lower Arrow. Nitrogen to phosphorus ratios (weight:weight) were also low during these months indicating that the surface waters were nitrogen deficient. These results indicated that the nitrogen to phosphorus blends of fertilizer added to the reservoir need to be fine tuned and closely monitored on a weekly basis in future years of nutrient addition. Phytoplankton results shifted during 2002 and 2003 compared to previous years. During 2002, there was a co-dominance of potentially 'inedible' diatoms (Fragilaria spp. and Diatoma) and 'greens' (Ulothrix). Large diatom populations occurred in 2003 and these results indicate it may be necessary to alter the frequency and amounts of weekly loads of nitrogen and phosphorus in future years to prevent the growth of inedible diatoms. Zooplankton density in 2002 and 2003, as in previous years, indicated higher densities in Lower Arrow than in Upper Arrow. Copepods and other Cladocera (mainly tiny specimens such as Bosmina sp.) had distinct peaks, higher than in previous years, while Daphnia was not present in higher numbers particularly in Upper Arrow. This density shift in favor to smaller cladocerans was mirrored in a weak biomass increase. In Upper Arrow, total zooplankton biomass decreased from 1999 to 2002, and in 2003 increased slightly, while in Lower Arrow the biomass decreased from 2000-2002. In Lower Arrow the majority of biomass was comprised of Daphnia throughout the study period except in 2002, while in Upper Arrow the total biomass was comprised of copepods from 2000-2003.},
doi = {10.2172/963292},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 01 00:00:00 EST 2007},
month = {Thu Feb 01 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • This report examines the results from the eleventh and twelfth years (2002 and 2003) of the Kootenay Lake fertilization experiment. Experimental fertilization has occurred with an adaptive management approach since 1992 in order to restore productivity lost as a result of upstream dams. One of the main objectives of the experiment is to restore kokanee (Oncorhynchus nerka) populations, which are a main food source for Gerrard rainbow trout (Oncorhynchus mykiss). Kootenay Lake is located between the Selkirk and Purcell mountains in southeastern British Columbia. It has an area of 395 km2, a maximum depth of 150 m, a mean depthmore » of 94 m, and a water renewal time of approximately two years. The quantity of agricultural grade liquid fertilizer (10-34-0, ammonium polyphosphate and 28-0-0, urea ammonium nitrate) added to Kootenay Lake in 2002 and 2003 was similar to that added from 1992 to 1996. After four years of decreased fertilizer loading (1997 to 2000), results indicated that kokanee populations had declined, and the decision was made to increase the loads again in 2001. The total load of fertilizer in 2002 was 47.1 tonnes of phosphorus and 206.7 tonnes of nitrogen. The total fertilizer load in 2003 was 47.1 tonnes of phosphorus and 240.8 tonnes of nitrogen. Additional nitrogen was added in 2003 to compensate for nitrogen depletion in the epilimnion. The fertilizer was applied to a 10 km stretch in the North Arm from 3 km south of Lardeau to 3 km south of Schroeder Creek. The maximum surface water temperature in 2002, measured on July 22, was 22 C in the North Arm and 21.3 C in the South Arm. In 2003, the maxima were recorded on August 5 at 20.6 C in the North Arm and on September 2 at 19.7 C in the South Arm. The maximum water temperature in the West Arm was 18.7 C on September 2, 2003. Kootenay Lake had oxygen-saturated water throughout the sampling season with values ranging from about 11-16 mg/L in 2002 and 2003. In both years, Secchi depth followed the expected pattern for an oligo-mesotrophic lake of decreasing in May, June, and early July, concurrent with the spring phytoplankton bloom, and clearing again as the summer progressed. Total phosphorus (TP) ranged from 2-11 {micro}g/L in 2002 and 2-21 {micro}g/L in 2003. With average TP values generally in the range of 3-10 {micro}g/L, Kootenay Lake is considered to be an oligotrophic to oligo-mesotrophic lake. Total dissolved phosphorus (TDP) followed the same seasonal trends as TP in 2002 and 2003 and ranged from 2-7 {micro}g/L in 2002 and from 2-10 {micro}g/L in 2003. Total nitrogen (TN) ranged from 90-380 {micro}g/L in 2002 and 100-210 {micro}g/L in 2003. During both the 2002 and 2003 sampling seasons, TN showed an overall decline in concentration with mid-summer and fall increases at some stations, which is consistent with previous years results. Dissolved inorganic nitrogen (DIN) concentrations showed a more pronounced declining trend over the sampling season compared with TN, corresponding to nitrate (the dominant component of DIN) being used by phytoplankton during summer stratification. DIN ranged from 7-176 {micro}g/L in 2002 and from 8-147 {micro}g/L in 2003. During 2003, discrete depth sampling occurred, and a more detailed look at the nitrate concentrations in the epilimnion was undertaken. There was a seasonal decline in nitrate concentrations, which supports the principle of increasing the nitrogen loading and the nitrogen to phosphorus (N:P) ratio during the fertilizer application period. Chlorophyll a (Chl a) concentrations in Kootenay Lake were in the range of 1.4-5.1 {micro}g/L in 2002 and 0.5-4.9 {micro}g/L in 2003. Over the sampling season, Chl a at North Arm stations generally increased in spring corresponding with the phytoplankton bloom, decreased during the summer, and increased again in the fall with mixing of the water column. The trend was similar, but less pronounced, at South Arm stations in these years, and spring Chl a concentrations were lower. During 2002, total algal biomass averaged during June, July and August was lower in the North Arm than the South Arm. This was the first time this occurred since the commencement of the North Arm fertilization experiment. Results in 2002 indicated Kootenay lake continues to be a diatom dominated lake (80 to 89% of the total average biomass). The overall trend observed throughout the 2003 sampling season was one of a slight decline in algal biomass from the North Arm stations towards those in the South Arm. Kootenay Lake continued to be a diatom-dominated lake (76-83% of total average biomass). Synedra spp. and some Asterionella, as in the previous three years, dominated the early biomass increase in 2003, but the peak biomass in July was largely due to Tabellaria.« less
  • The Arrow Lakes food web has been influenced by several anthropogenic stressors during the past 45 years. These include the introduction of mysid shrimp (Mysis relicta) in 1968 and 1974 and the construction of large hydroelectric impoundments in 1969, 1973 and 1983. The construction of the impoundments affected the fish stocks in Upper and Lower Arrow lakes in several ways. The construction of Hugh Keenleyside Dam (1969) resulted in flooding that eliminated an estimated 30% of the available kokanee spawning habitat in Lower Arrow tributaries and at least 20% of spawning habitat in Upper Arrow tributaries. The Mica Dam (1973)more » contributed to water level fluctuations and blocked upstream migration of all fish species including kokanee. The Revelstoke Dam (1983) flooded 150 km of the mainstem Columbia River and 80 km of tributary streams which were used by kokanee, bull trout, rainbow trout and other species. The construction of upstream dams also resulted in nutrient retention which ultimately reduced reservoir productivity. In Arrow Lakes Reservoir (ALR), nutrients settled out in the Revelstoke and Mica reservoirs, resulting in decreased productivity, a process known as oligotrophication. Kokanee are typically the first species to respond to oligotrophication resulting from aging impoundments. To address the ultra-oligotrophic status of ALR, a bottom-up approach was taken with the addition of nutrients (nitrogen and phosphorus in the form of liquid fertilizer from 1999 to 2004). Two of the main objectives of the experiment were to replace lost nutrients as a result of upstream impoundments and restore productivity in Upper Arrow and to restore kokanee and other sport fish abundance in the reservoir. The bottom-up approach to restoring kokanee in ALR has been successful by replacing nutrients lost as a result of upstream impoundments and has successfully restored the productivity of Upper Arrow. Primary production rates increased, the phytoplankton community responded with a shift in species and zooplankton biomass was more favorable for kokanee. With more productive lower trophic levels, the kokanee population increased in abundance and biomass, resulting in improved conditions for bull trout, one of ALR's piscivorous species.« less
  • The purpose of this addendum is, first, to provide and discuss disease agent survey results that were not available for inclusion in the Disease Risk Assessment portion of the YEAR 3 report at the time of its writing, and second, to make recommendations stemming from these results. The first set of results deals with live box exposure tests conducted using juvenile sentinel rainbow trout in the spring of 2002 to detect Myxosoma cerebralis and Ceratomyxa shasta. The second set of results deals with similar exposure tests conducted in the spring of 2003. The latter tests were initially intended to occurmore » in the fall of 2002 but had to be re-scheduled to the spring of 2003 because suitably aged sentinel rainbow trout for the exposures were not available in the fall of 2002. The methods used for the live box exposure tests were essentially the same as those described in the YEAR 3 report. Fish were again exposed at the same four sites above McIntyre Dam and at the same four sites below the dam. As mentioned in the YEAR 3 report, the spring 2002 exposure lasted for 21 days (May 6 to 27). The spring 2003 exposure also lasted for 21 days (April 22 to May 13). The number of fish in the spring 2003 tests was, however, reduced to approximately half the number used in previous tests in order to reduce the chances of dissolved oxygen problems, suspected to have occurred in earlier tests in some of the live boxes. As before, fish that survived the live box exposures were transferred to Skaha Hatchery where they were held for sufficient time to permit any infections with M. cerebralis and C. shasta to develop and to permit for spore development in these pathogens. Assays for the pathogens were carried out as previously described. Detection of M. cerebralis was based on detecting its spores following the trypsin/pepsin digestion method. Detection of C. shasta was based on a polymerase chain reaction (PCR) test, but smears of fresh intestinal tissues (one fish per smear) were also prepared so that positive PCR findings could be confirmed by the microscopic observation of C. shasta spores. Except as just mentioned, appropriate tissues from the fish were in most cases pooled (maximum of five fish per pool) for the assays.« less
  • Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of four years of limnological sampling to compare inter and intra annual variability in lake productivity to evaluate potential rearing conditions for juvenile sockeyed salmon. Data was used to evaluate the effects of nutrient enhancement, annual weather patterns, and planktivore consumption on lake productivity.
  • This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2002 and 2003 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2002 and 2003.