skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: APS Science 2006.

Abstract

In my five years as the Director of the Advanced Photon Source (APS), I have been fortunate to see major growth in the scientific impact from the APS. This year I am particularly enthusiastic about prospects for our longer-term future. Every scientific instrument must remain at the cutting edge to flourish. Our plans for the next generation of APS--an APS upgrade--got seriously in gear this year with strong encouragement from our users and sponsors. The most promising avenue that has emerged is the energy-recovery linac (ERL) (see article on page xx), for which we are beginning serious R&D. The ERL{at}APS would offer revolutionary performance, especially for x-ray imaging and ultrafast science, while not seriously disrupting the existing user base. I am very proud of our accelerator physics and engineering staff, who not only keep the current APS at the forefront, but were able to greatly impress our international Machine Advisory Committee with the quality of their work on the possible upgrade option (see page xx). As we prepare for long-term major upgrades, our plans to develop and optimize all the sectors at APS in the near future are advancing. Several new beamlines saw first light this year, including a dedicatedmore » powder diffraction beamline (11-BM), two instruments for inelastic x-ray scattering at sector 30, and the Center for Nanoscale Materials (CNM) Nanoprobe beamline at sector 26. Our partnership in the first x-ray free-electron laser (LCLS) to be built at Stanford contributes to revolutionary growth in ultrafast science (see page xx), and we are developing a pulse chirping scheme to get ps pulses at sector 7 of the APS within a year or so. In this report, you will find selected highlights of scientific research at the APS from calendar year 2006. The highlighted work covers diverse disciplines, from fundamental to applied science. In the article on page xx you can see the direct impact of APS research on technology. Several new products have emerged from work at the APS, to complement the tremendous output of work in basic science, which often has payoff in technology but over decades rather than years. Highlights in this report also reflect the relevance of APS work to Department of Energy missions, for example a route to more efficient fuel cells (page xx mr-88-073113) addresses the energy challenge, and natural approaches to cleaning up the environment.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
962874
Report Number(s):
ANL-06/23
TRN: US0903084
DOE Contract Number:  
DE-AC02-06CH11357
Resource Type:
Technical Report
Country of Publication:
United States
Language:
ENGLISH
Subject:
43 PARTICLE ACCELERATORS; 30 DIRECT ENERGY CONVERSION; ACCELERATORS; ADVANCED PHOTON SOURCE; ADVISORY COMMITTEES; CLEANING; DIFFRACTION; ENERGY RECOVERY; FREE ELECTRON LASERS; FUEL CELLS; LINEAR ACCELERATORS; PERFORMANCE; PHYSICS; SCATTERING

Citation Formats

Gibson, J. M., Fenner, R. B., Long, G., Borland, M., and Decker, G. APS Science 2006.. United States: N. p., 2007. Web. doi:10.2172/962874.
Gibson, J. M., Fenner, R. B., Long, G., Borland, M., & Decker, G. APS Science 2006.. United States. doi:10.2172/962874.
Gibson, J. M., Fenner, R. B., Long, G., Borland, M., and Decker, G. Thu . "APS Science 2006.". United States. doi:10.2172/962874. https://www.osti.gov/servlets/purl/962874.
@article{osti_962874,
title = {APS Science 2006.},
author = {Gibson, J. M. and Fenner, R. B. and Long, G. and Borland, M. and Decker, G.},
abstractNote = {In my five years as the Director of the Advanced Photon Source (APS), I have been fortunate to see major growth in the scientific impact from the APS. This year I am particularly enthusiastic about prospects for our longer-term future. Every scientific instrument must remain at the cutting edge to flourish. Our plans for the next generation of APS--an APS upgrade--got seriously in gear this year with strong encouragement from our users and sponsors. The most promising avenue that has emerged is the energy-recovery linac (ERL) (see article on page xx), for which we are beginning serious R&D. The ERL{at}APS would offer revolutionary performance, especially for x-ray imaging and ultrafast science, while not seriously disrupting the existing user base. I am very proud of our accelerator physics and engineering staff, who not only keep the current APS at the forefront, but were able to greatly impress our international Machine Advisory Committee with the quality of their work on the possible upgrade option (see page xx). As we prepare for long-term major upgrades, our plans to develop and optimize all the sectors at APS in the near future are advancing. Several new beamlines saw first light this year, including a dedicated powder diffraction beamline (11-BM), two instruments for inelastic x-ray scattering at sector 30, and the Center for Nanoscale Materials (CNM) Nanoprobe beamline at sector 26. Our partnership in the first x-ray free-electron laser (LCLS) to be built at Stanford contributes to revolutionary growth in ultrafast science (see page xx), and we are developing a pulse chirping scheme to get ps pulses at sector 7 of the APS within a year or so. In this report, you will find selected highlights of scientific research at the APS from calendar year 2006. The highlighted work covers diverse disciplines, from fundamental to applied science. In the article on page xx you can see the direct impact of APS research on technology. Several new products have emerged from work at the APS, to complement the tremendous output of work in basic science, which often has payoff in technology but over decades rather than years. Highlights in this report also reflect the relevance of APS work to Department of Energy missions, for example a route to more efficient fuel cells (page xx mr-88-073113) addresses the energy challenge, and natural approaches to cleaning up the environment.},
doi = {10.2172/962874},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu May 24 00:00:00 EDT 2007},
month = {Thu May 24 00:00:00 EDT 2007}
}

Technical Report:

Save / Share: