skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Yakima and Touchet River Basins Phase II Fish Screen Evaluation, 2006-2007 Annual Report.

Abstract

In 2006, Pacific Northwest National Laboratory (PNNL) researchers evaluated 27 Phase II fish screen sites in the Yakima and Touchet river basins. Pacific Northwest National Laboratory performs these evaluations for Bonneville Power Administration (BPA) to determine whether the fish screening devices meet those National Marine Fisheries (NMFS) criteria for juvenile fish screen design, that promote safe and timely passage of juvenile salmonids. The NMFS criteria against which the sites were evaluated are as follows: (1) a uniform flow distribution over the screen surface to minimize approach velocity; (2) approach velocities less than or equal to 0.4 ft/s protects the smallest salmonids from impingement; (3) sweep velocities that are greater than approach velocities to minimize delay of out-migrating juveniles and minimize sediment deposition near the screens; (4) a bypass flow greater than or equal to the maximum flow velocity vector resultant upstream of the screens to also minimize delay of out-migrating salmonids; (5) a gradual and efficient acceleration of flow from the upstream end of the site into the bypass entrance to minimize delay of out-migrating salmonids; and (6) screen submergence between 65% and 85% for drum screen sites. In addition, the silt and debris accumulation next to the screens shouldmore » be kept to a minimum to prevent excessive wear on screens, seals and cleaning mechanisms. Evaluations consist of measuring velocities in front of the screens, using an underwater camera to assess the condition and environment in front of the screens, and noting the general condition and operation of the sites. Results of the evaluations in 2006 include the following: (1) Most approach velocities met the NMFS criterion of less than or equal to 0.4 ft/s. Of the sites evaluated, 31% exceeded the criterion at least once. Thirty-three percent of flat-plate screens had problems compared to 25% of drum screens. (2) Woody debris and gravel deposited during high river levels were a problem at several sites. In some cases, it was difficult to determine the bypass pipe was plugged until several weeks had passed. Slow bypass flow caused by both the obstructions and high river levels may have discouraged fish from entering the bypass, but once they were in the bypass, they may have had no safe exit. Perhaps some tool or technique can be devised that would help identify whether slow bypass flow is caused by pipe blockage or by high river levels. (3) Bypass velocities generally were greater than sweep velocities, but sweep velocities often did not increase toward the bypass. The latter condition could slow migration of fish through the facility. (4) Screen and seal materials generally were in good condition. (5) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (6) Washington Department of Fish and Wildlife (WDFW) and U.S. Bureau of Reclamation (USBR) generally operated and maintained fish screen facilities in a way that provided safe passage for juvenile fish. (7) Efforts with WDFW to find optimal louver settings at Naches-Selah were partly successful. The number of spots with excessive approach velocities was decreased, but we were unable to adjust the site to bring all approach values below 0.4 ft/s. (8) In some instances, irrigators responsible for specific maintenance at their sites (e.g., debris removal) did not perform their tasks in a way that provided optimum operation of the fish screen facility. Enforcement personnel proved effective at reminding irrigation districts of their responsibilities to maintain the sites for fish protection as well as irrigation. (9) We recommend placing datasheets providing up-to-date operating criteria and design flows in each site's logbox. The datasheet should include bypass design flows and a table showing depths of water over the weir and corresponding bypass flow. A similar datasheet relating canal gage readings and canal discharge in cubic feet per second would help identify times when the canal is taking more water than it should. This information is available at some of the sites and assists operators in determining if the site is running within the site specific design criteria. (10) Data were collected at Gleed when the protective metal plates were set down to the forebay floor and when they were raised to expose most of the screens. These data were sent to USBR personnel for use in looking for ways to reduce high approach velocities and erratic flow pattern at Gleed. (11) Alternatives to a screen site at Taylor are apparently being considered. A lot of effort was spent in 2005 and 2006 trying to increase water to the site, but it still was unable to operate within NMFS criteria for much of the year and may be a hazard to juvenile salmonids at times.« less

Authors:
;  [1]
  1. Pacific Northwest National Laboratory
Publication Date:
Research Org.:
Bonneville Power Administration (BPA), Portland, OR (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
961995
Report Number(s):
DOE/BP-00026934-1
R&D Project: 1985-062-00; TRN: US200915%%373
DOE Contract Number:
26934 REL 1
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
13 HYDRO ENERGY; ACCELERATION; CLEANING; DEPOSITION; ENFORCEMENT; FISHERIES; IMPINGEMENT; IRRIGATION; JUVENILES; MAINTENANCE; PERSONNEL; REMOVAL; RIVERS; SCREENS; SEDIMENTS; SILT; US BUREAU OF RECLAMATION; VECTORS; VELOCITY

Citation Formats

Chamness, Mickie, and Tunnicliffe, Cherylyn. Yakima and Touchet River Basins Phase II Fish Screen Evaluation, 2006-2007 Annual Report.. United States: N. p., 2007. Web. doi:10.2172/961995.
Chamness, Mickie, & Tunnicliffe, Cherylyn. Yakima and Touchet River Basins Phase II Fish Screen Evaluation, 2006-2007 Annual Report.. United States. doi:10.2172/961995.
Chamness, Mickie, and Tunnicliffe, Cherylyn. Thu . "Yakima and Touchet River Basins Phase II Fish Screen Evaluation, 2006-2007 Annual Report.". United States. doi:10.2172/961995. https://www.osti.gov/servlets/purl/961995.
@article{osti_961995,
title = {Yakima and Touchet River Basins Phase II Fish Screen Evaluation, 2006-2007 Annual Report.},
author = {Chamness, Mickie and Tunnicliffe, Cherylyn},
abstractNote = {In 2006, Pacific Northwest National Laboratory (PNNL) researchers evaluated 27 Phase II fish screen sites in the Yakima and Touchet river basins. Pacific Northwest National Laboratory performs these evaluations for Bonneville Power Administration (BPA) to determine whether the fish screening devices meet those National Marine Fisheries (NMFS) criteria for juvenile fish screen design, that promote safe and timely passage of juvenile salmonids. The NMFS criteria against which the sites were evaluated are as follows: (1) a uniform flow distribution over the screen surface to minimize approach velocity; (2) approach velocities less than or equal to 0.4 ft/s protects the smallest salmonids from impingement; (3) sweep velocities that are greater than approach velocities to minimize delay of out-migrating juveniles and minimize sediment deposition near the screens; (4) a bypass flow greater than or equal to the maximum flow velocity vector resultant upstream of the screens to also minimize delay of out-migrating salmonids; (5) a gradual and efficient acceleration of flow from the upstream end of the site into the bypass entrance to minimize delay of out-migrating salmonids; and (6) screen submergence between 65% and 85% for drum screen sites. In addition, the silt and debris accumulation next to the screens should be kept to a minimum to prevent excessive wear on screens, seals and cleaning mechanisms. Evaluations consist of measuring velocities in front of the screens, using an underwater camera to assess the condition and environment in front of the screens, and noting the general condition and operation of the sites. Results of the evaluations in 2006 include the following: (1) Most approach velocities met the NMFS criterion of less than or equal to 0.4 ft/s. Of the sites evaluated, 31% exceeded the criterion at least once. Thirty-three percent of flat-plate screens had problems compared to 25% of drum screens. (2) Woody debris and gravel deposited during high river levels were a problem at several sites. In some cases, it was difficult to determine the bypass pipe was plugged until several weeks had passed. Slow bypass flow caused by both the obstructions and high river levels may have discouraged fish from entering the bypass, but once they were in the bypass, they may have had no safe exit. Perhaps some tool or technique can be devised that would help identify whether slow bypass flow is caused by pipe blockage or by high river levels. (3) Bypass velocities generally were greater than sweep velocities, but sweep velocities often did not increase toward the bypass. The latter condition could slow migration of fish through the facility. (4) Screen and seal materials generally were in good condition. (5) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (6) Washington Department of Fish and Wildlife (WDFW) and U.S. Bureau of Reclamation (USBR) generally operated and maintained fish screen facilities in a way that provided safe passage for juvenile fish. (7) Efforts with WDFW to find optimal louver settings at Naches-Selah were partly successful. The number of spots with excessive approach velocities was decreased, but we were unable to adjust the site to bring all approach values below 0.4 ft/s. (8) In some instances, irrigators responsible for specific maintenance at their sites (e.g., debris removal) did not perform their tasks in a way that provided optimum operation of the fish screen facility. Enforcement personnel proved effective at reminding irrigation districts of their responsibilities to maintain the sites for fish protection as well as irrigation. (9) We recommend placing datasheets providing up-to-date operating criteria and design flows in each site's logbox. The datasheet should include bypass design flows and a table showing depths of water over the weir and corresponding bypass flow. A similar datasheet relating canal gage readings and canal discharge in cubic feet per second would help identify times when the canal is taking more water than it should. This information is available at some of the sites and assists operators in determining if the site is running within the site specific design criteria. (10) Data were collected at Gleed when the protective metal plates were set down to the forebay floor and when they were raised to expose most of the screens. These data were sent to USBR personnel for use in looking for ways to reduce high approach velocities and erratic flow pattern at Gleed. (11) Alternatives to a screen site at Taylor are apparently being considered. A lot of effort was spent in 2005 and 2006 trying to increase water to the site, but it still was unable to operate within NMFS criteria for much of the year and may be a hazard to juvenile salmonids at times.},
doi = {10.2172/961995},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2007},
month = {Thu Mar 01 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • In 2005, Pacific Northwest National Laboratory (PNNL) researchers evaluated 25 Phase II fish screen sites in the Yakima and Touchet river basins. Pacific Northwest National Laboratory performs these evaluations for Bonneville Power Administration (BPA) to determine whether the fish screening devices meet National Marine Fisheries Service (NMFS) criteria to promote safe and timely fish passage. Evaluations consist of measuring velocities in front of the screens, using an underwater camera to look at the condition and environment in front of the screens, and noting the general condition and operation of the sites. Results of the evaluations in 2005 include the following:more » (1) Most approach velocities met the NMFS criterion of less than or equal to 0.4 fps. Less than 13% of all approach measurements exceeded the criterion, and these occurred at 10 of the sites. Flat-plate screens had more problems than drum screens with high approach velocities. (2) Bypass velocities generally were greater than sweep velocities, but sweep velocities often did not increase toward the bypass. The latter condition could slow migration of fish through the facility. (3) Screen and seal materials generally were in good condition. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (5) Washington Department of Fish and Wildlife (WDFW) and U.S. Bureau of Reclamation (USBR) generally operate and maintain fish screen facilities in a way that provides safe passage for juvenile fish. (6) In some instances, irrigators responsible for specific maintenance at their sites (e.g., debris removal) are not performing their tasks in a way that provides optimum operation of the fish screen facility. New ways need to be found to encourage them to maintain their facilities properly. (7) We recommend placing datasheets providing up-to-date operating criteria and design flows in each sites logbox. The datasheet should include bypass design flows and a table showing depths of water over the weir and corresponding bypass flow. This information is available at some of the sites but may be outdated. These data are used to determine if the site is running within design criteria. (8) Modifying use of debris control plates at Gleed helped minimize the extreme fluctuations in flow, but approach velocities are still too high. Other ways to reduce the approach velocities need to be tried, possibly including redesign of the site. (9) Alternatives to a screen site at Taylor should be considered. A lot of effort was spent trying to increase water to the site, but it still was unable to operate within NMFS criteria for most of the year and may be a hazard to juvenile salmonids. We conclude that the conditions at most of the Phase II fish screen facilities we evaluated in 2005 would be expected to provide safe passage for juvenile fish. For those sites where conditions are not always optimum for safe fish passage, PNNL researchers will try to coordinate with the WDFW and USBR in 2006 to find solutions to the problems. Some of those problems are consistently high approach velocities at specific sites, including Congdon, Naches-Selah, Union Gap, and Yakima-Tieton. We would like to be able to monitor changes in velocities as soon as operations and maintenance personnel adjust the louvers or porosity boards at these sites. This will give them immediate feedback on the results of their modifications and allow additional adjustments as necessary until the conditions meet NMFS criteria. Pacific Northwest National Laboratory has performed evaluations at many of these sites over the past 8 years, providing information WDFW and USBR personnel can use to perform their operations and maintenance more effectively. Consequently, overall effectiveness of the screens facilities has improved over time.« less
  • The goal of this project is to assure that the benefits of BPA's capital investment in Yakima Basin Phase II fish screen facilities are realized by performing operations that assure optimal fish protection and long facility life through a rigorous preventative maintenance program, while helping to restore ESA listed fish stocks in the Yakima River Basin.
  • In 2004, the Pacific Northwest National Laboratory (PNNL) evaluated 25 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect tomore » fish passage. Based on evaluations in 2004, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by NOAA Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (4) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites. (5) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve passage conditions for juvenile fish. For example, Taylor has had problems meeting bypass flow and submergence operating criteria since the main river channel shifted away from the site 2 years ago, and Fruitvale consistently has had problems meeting bypass flow criteria when the water is low. (6) Continued problems at Gleed point to design flaws. This site should be considered for redesign or replacement.« less
  • In 2003, the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service [NMFS]) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect tomore » fish passage. Based on evaluations in 2003, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the NOAA Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve juvenile fish passage conditions. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites.« less
  • In 2002, the Pacific Northwest National Laboratory evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. Pacific Northwest National Laboratory collected data to determine whether velocities in front of the screens and in the bypasses met National Marine Fisheries Service criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. In addition, Pacific Northwest National Laboratory conducted underwater video surveys to evaluate the environmental and operational conditions ofmore » the screen sites with respect to fish passage. Based on evaluations in 2002, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the National Marine Fisheries Service. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to increase safe juvenile fish passage. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris should be improved at some sites.« less