skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploratory Research on the Development of Novel Ce3+-Activated Phosphate Glass Scintillators

Abstract

Abstract We report the discovery of a new family of Ce3+-activated phosphate glass scintillators that can be formed either with or without the addition of 6Li, for neutron or X-ray/gamma-ray radiation detection, respectively. Trivalent cerium can be efficiently introduced into these phosphate glasses in surprisingly high concentrations in the form of anhydrous cerium tri-chloride. Additionally, these glasses can be melted and poured at the relatively low temperatures of 1000 1050 oC (i.e., substantially lower than silicate glasses), and to retain the cerium in the trivalent state it is not necessary to maintain highly reducing conditions during the synthesis process. The family of alkaline-earth-alkali phosphate glasses investigated here represents a system with two dissimilar cations - thereby offering a large range of potential compositional variations, substitutions, and combinations. In order to alter the scintillator characteristics, we have explored part of that compositional space by studying Ca-Na, Ca-Li, Ca-Cs, Ca-Rb, Ca-K and Ca-Ba-Na phosphate glasses, as well as various co-doping and post-synthesis thermal processing schemes. A series of experiments under x ray, gamma ray, and neutron excitations was carried out. The broad, peaking at about 355 nm,, UV scintillation of these glasses is well suited for applications that use common photomultipliers withmore » bi-alkali photo-cathodes. Pulse shape measurements show that the primary component of the scintillation in most of these glasses corresponds to 75 90 % of the emitted photons, and it decays with a time constant of 30 to 40 ns, which classifies these materials as reasonably fast scintillators. Although the gamma-induced light yield of these new scintillating phosphate glasses is, thus far, only about 30 % of that of commercial GS20 silicate glass, due to the generally faster scintillation, the initial amplitude of the scintillation pulse of these glasses is close to that of the above-mentioned GS20 scintillator.« less

Authors:
 [1];  [1];  [1];  [2];  [1];  [1]
  1. ORNL
  2. Oak Ridge National Laboratory (ORNL)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
958908
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Journal Article
Journal Name:
IEEE Transactions on Nuclear Science
Additional Journal Information:
Journal Volume: 55; Journal Issue: 6; Journal ID: ISSN 0018-9499
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; AMPLITUDES; CATIONS; CERIUM; GLASS; NEUTRONS; PHOSPHATE GLASS; PHOSPHATES; PHOSPHORS; PHOTOMULTIPLIERS; PHOTONS; PROCESSING; RADIATION DETECTION; SCINTILLATIONS; SHAPE; SILICATES; SYNTHESIS; glass scintillators; gamma-ray detectors; neutron detectors; X-ray detectors

Citation Formats

Wisniewski, Dariusz J, Boatner, Lynn A, Ramey, Joanne Oxendine, Wisniewski, Monica, Neal, John S, and Jellison, Jr, Gerald Earle. Exploratory Research on the Development of Novel Ce3+-Activated Phosphate Glass Scintillators. United States: N. p., 2008. Web. doi:10.1109/TNS.2008.2007567.
Wisniewski, Dariusz J, Boatner, Lynn A, Ramey, Joanne Oxendine, Wisniewski, Monica, Neal, John S, & Jellison, Jr, Gerald Earle. Exploratory Research on the Development of Novel Ce3+-Activated Phosphate Glass Scintillators. United States. https://doi.org/10.1109/TNS.2008.2007567
Wisniewski, Dariusz J, Boatner, Lynn A, Ramey, Joanne Oxendine, Wisniewski, Monica, Neal, John S, and Jellison, Jr, Gerald Earle. 2008. "Exploratory Research on the Development of Novel Ce3+-Activated Phosphate Glass Scintillators". United States. https://doi.org/10.1109/TNS.2008.2007567.
@article{osti_958908,
title = {Exploratory Research on the Development of Novel Ce3+-Activated Phosphate Glass Scintillators},
author = {Wisniewski, Dariusz J and Boatner, Lynn A and Ramey, Joanne Oxendine and Wisniewski, Monica and Neal, John S and Jellison, Jr, Gerald Earle},
abstractNote = {Abstract We report the discovery of a new family of Ce3+-activated phosphate glass scintillators that can be formed either with or without the addition of 6Li, for neutron or X-ray/gamma-ray radiation detection, respectively. Trivalent cerium can be efficiently introduced into these phosphate glasses in surprisingly high concentrations in the form of anhydrous cerium tri-chloride. Additionally, these glasses can be melted and poured at the relatively low temperatures of 1000 1050 oC (i.e., substantially lower than silicate glasses), and to retain the cerium in the trivalent state it is not necessary to maintain highly reducing conditions during the synthesis process. The family of alkaline-earth-alkali phosphate glasses investigated here represents a system with two dissimilar cations - thereby offering a large range of potential compositional variations, substitutions, and combinations. In order to alter the scintillator characteristics, we have explored part of that compositional space by studying Ca-Na, Ca-Li, Ca-Cs, Ca-Rb, Ca-K and Ca-Ba-Na phosphate glasses, as well as various co-doping and post-synthesis thermal processing schemes. A series of experiments under x ray, gamma ray, and neutron excitations was carried out. The broad, peaking at about 355 nm,, UV scintillation of these glasses is well suited for applications that use common photomultipliers with bi-alkali photo-cathodes. Pulse shape measurements show that the primary component of the scintillation in most of these glasses corresponds to 75 90 % of the emitted photons, and it decays with a time constant of 30 to 40 ns, which classifies these materials as reasonably fast scintillators. Although the gamma-induced light yield of these new scintillating phosphate glasses is, thus far, only about 30 % of that of commercial GS20 silicate glass, due to the generally faster scintillation, the initial amplitude of the scintillation pulse of these glasses is close to that of the above-mentioned GS20 scintillator.},
doi = {10.1109/TNS.2008.2007567},
url = {https://www.osti.gov/biblio/958908}, journal = {IEEE Transactions on Nuclear Science},
issn = {0018-9499},
number = 6,
volume = 55,
place = {United States},
year = {Tue Jan 01 00:00:00 EST 2008},
month = {Tue Jan 01 00:00:00 EST 2008}
}