skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Biased View on the Nanoworld: Electromechanical Imaging By SPM

Abstract

Coupling between electrical and mechanical phenomena is one of the fundamental natural mechanisms manifested in materials and systems ranging from ferroelectrics and multiferroics to electroactive polymers and biological systems. Electromechanics refers to a broad class of phenomena in which mechanical deformation is induced by an external electric field, or, conversely, electric charge is generated by the application of an external force. This coupling has obvious practical uses in actuators, sensors, tunable optics, and energy harvesting, and is also of great interest since it is inherently tied to physical materials properties. In ferroelectrics, electromechanical behavior is directly linked to polarization, and hence, can be used to study polarization reversal mechanisms, domain wall growth and pinning, cross-coupled phenomena in multiferroics, and electron-lattice coupling.

Authors:
 [1];  [1];  [1];  [2]
  1. ORNL
  2. Asylum Research, Santa Barbara, CA
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
958821
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: R & D Magazine; Journal Volume: 49; Journal Issue: 10
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; ACTUATORS; DEFORMATION; ELECTRIC CHARGES; ELECTRIC FIELDS; ELECTROMECHANICS; HARVESTING; OPTICS; POLARIZATION; POLYMERS

Citation Formats

Kalinin, Sergei V, Rodriguez, Brian J, Jesse, Stephen, and Proksch, Roger. A Biased View on the Nanoworld: Electromechanical Imaging By SPM. United States: N. p., 2007. Web.
Kalinin, Sergei V, Rodriguez, Brian J, Jesse, Stephen, & Proksch, Roger. A Biased View on the Nanoworld: Electromechanical Imaging By SPM. United States.
Kalinin, Sergei V, Rodriguez, Brian J, Jesse, Stephen, and Proksch, Roger. Mon . "A Biased View on the Nanoworld: Electromechanical Imaging By SPM". United States. doi:.
@article{osti_958821,
title = {A Biased View on the Nanoworld: Electromechanical Imaging By SPM},
author = {Kalinin, Sergei V and Rodriguez, Brian J and Jesse, Stephen and Proksch, Roger},
abstractNote = {Coupling between electrical and mechanical phenomena is one of the fundamental natural mechanisms manifested in materials and systems ranging from ferroelectrics and multiferroics to electroactive polymers and biological systems. Electromechanics refers to a broad class of phenomena in which mechanical deformation is induced by an external electric field, or, conversely, electric charge is generated by the application of an external force. This coupling has obvious practical uses in actuators, sensors, tunable optics, and energy harvesting, and is also of great interest since it is inherently tied to physical materials properties. In ferroelectrics, electromechanical behavior is directly linked to polarization, and hence, can be used to study polarization reversal mechanisms, domain wall growth and pinning, cross-coupled phenomena in multiferroics, and electron-lattice coupling.},
doi = {},
journal = {R & D Magazine},
number = 10,
volume = 49,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • Insulated cantilever probes with a high aspect ratio conducting apex have been fabricated and their dynamic and electrical properties analyzed. The cantilevers were coated with silicon dioxide and a via was fabricated through the oxide at the tip apex and backfilled with tungsten to create an insulated probe with a conducting tip. The stiffness and Q-factor of the cantilevers increased after the modifications and their resonances shifted to higher frequencies. The coupling strength between the cantilever and the coating are determined. The applications to conductive and electromechanical imaging of ferroelectric domains are illustrated, and a probe apex repair process ismore » demonstrated.« less
  • The majority of calcified and connective tissues possess complex hierarchical structure spanning the length scales from nanometers to millimeters. Understanding the biological functionality of these materials requires reliable methods for structural imaging on the nanoscale. Here, we demonstrate an approach for electromechanical imaging of the structure of biological samples on the length scales from tens of microns to nanometers using piezoresponse force microscopy (PFM), which utilizes the intrinsic piezoelectricity of biopolymers such as proteins and polysaccharides as the basis for high-resolution imaging. Nanostructural imaging of a variety of protein-based materials, including tooth, antler, and cartilage, is demonstrated. Visualization of proteinmore » fibrils with sub-10 nm spatial resolution in a human tooth is achieved. Given the near-ubiquitous presence of piezoelectricity in biological systems, PFM is suggested as a versatile tool for micro- and nanostructural imaging in both connective and calcified tissues.« less
  • High-resolution imaging of ferroelectric materials using piezoresponse force microscopy (PFM) is demonstrated in an aqueous environment. The elimination of both long-range electrostatic forces and capillary interactions results in a localization of the ac field to the tip-surface junction and allows the tip-surface contact area to be controlled. This approach results in spatial resolutions approaching the limit of the intrinsic domain-wall width. Imaging at frequencies corresponding to high-order cantilever resonances minimizes the viscous damping and added mass effects on cantilever dynamics and allows sensitivities comparable to ambient conditions. PFM in liquids will provide novel opportunities for high-resolution studies of ferroelectric materials,more » imaging of soft polymer materials, and imaging of biological systems in physiological environments on, ultimately, the molecular level.« less
  • An approach for combined imaging of elastic and electromechanical properties of materials, referred to as piezoacoustic scanning probe microscopy (PA-SPM), is presented. Applicability of this technique for elastic and electromechanical imaging with nanoscale resolution in such dissimilar materials as ferroelectrics and biological tissues is demonstrated. The PA-SPM signal formation is analyzed based on the theory of nanoelectromechanics of piezoelectric indentation and signal sensitivity to materials properties and imaging conditions. It is shown that simultaneous measurements of local indentation stiffness and indentation piezocoefficient provide the most complete description of the local electroelastic properties for transversally isotropic materials, thus making piezoacoustic SPMmore » a comprehensive imaging and analysis tool. The contrast formation mechanism in the low frequency regime is described in terms of tip-surface contact mechanics. Signal generation volumes for electromechanical and elastic signals are determined and relative sensitivity of piezoresponse force microscopy (PFM) and atomic force acoustic microscopy (AFAM) for topographic cross-talk is established.« less
  • The coupling between electrical and mechanical phenomena is a ubiquitous feature of many information and energy storage materials and devices. In addition to involvement in performance and degradation mechanisms, electromechanical effects underpin a broad spectrum of nanoscale imaging and spectroscopies including piezoresponse force and electrochemical strain microscopies. Traditionally, these studies are conducted under ambient conditions. However, applications related to imaging energy storage and electrophysiological phenomena require operation in a liquid phase and therefore the development of electromechanical probing techniques suitable to liquid environments. Due to the relative high conductivity of most liquids and liquid decomposition at low voltages, the transfermore » of characterization techniques from ambient to liquid is not straightforward. Here we present a detailed study of ferroelectric domain imaging and manipulation in thin film BiFeO{sub 3} using piezoresponse force microscopy in liquid environments as model systems for electromechanical phenomena in general. We explore the use of contact resonance enhancement and the application of multifrequency excitation and detection principles to overcome the experimental problems introduced by a liquid environment. Understanding electromechanical sample characterization in liquid is a key aspect not only for ferroelectric oxides but also for biological and electrochemical sample systems.« less