skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A New Class of Supramolecular Wires

Abstract

We present an unconventional approach to 1-D supramolecular wires based on the self-assembly of donor-sigma-acceptor molecules. The concept is demonstrated using one class of these systems, 1-aza-adamantanetriones (AATs), that are well-characterized in terms of their solution/solid-state self-assembly and chemical manipulation. Our results show that accompanying spontaneous organization of the molecules into 1-D periodic arrays is delocalization of the frontier molecular orbitals through the saturated tricyclic cores of the monomers that spans the entire system. The electronic band structure for the 1-D wire reveals significant dispersion and can be tuned from the insulating regime to the semiconducting regime by suitable chemical functionalization of the core. The theoretical understanding of this new class of supramolecular structures sets the stage for the tailored design of novel functional materials that are alternative to those comprised of traditional -conjugated systems

Authors:
 [1];  [1];  [1];  [1];  [2];  [3]
  1. ORNL
  2. University of Florida
  3. Virginia Polytechnic Institute and State University (Virginia Tech)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Center for Nanophase Materials Sciences; Center for Computational Sciences
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
958819
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry C; Journal Volume: 111; Journal Issue: 51
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ONE-DIMENSIONAL CALCULATIONS; MONOMERS; WIRES; ORGANIC COMPOUNDS; ELECTRONIC STRUCTURE

Citation Formats

Sumpter, Bobby G, Meunier, Vincent, Castellano, Ronald K, Lampkins, Andrew J, Li, Hengfeng, and Valeev, Edward F. A New Class of Supramolecular Wires. United States: N. p., 2007. Web. doi:10.1021/jp076329p.
Sumpter, Bobby G, Meunier, Vincent, Castellano, Ronald K, Lampkins, Andrew J, Li, Hengfeng, & Valeev, Edward F. A New Class of Supramolecular Wires. United States. doi:10.1021/jp076329p.
Sumpter, Bobby G, Meunier, Vincent, Castellano, Ronald K, Lampkins, Andrew J, Li, Hengfeng, and Valeev, Edward F. Mon . "A New Class of Supramolecular Wires". United States. doi:10.1021/jp076329p.
@article{osti_958819,
title = {A New Class of Supramolecular Wires},
author = {Sumpter, Bobby G and Meunier, Vincent and Castellano, Ronald K and Lampkins, Andrew J and Li, Hengfeng and Valeev, Edward F},
abstractNote = {We present an unconventional approach to 1-D supramolecular wires based on the self-assembly of donor-sigma-acceptor molecules. The concept is demonstrated using one class of these systems, 1-aza-adamantanetriones (AATs), that are well-characterized in terms of their solution/solid-state self-assembly and chemical manipulation. Our results show that accompanying spontaneous organization of the molecules into 1-D periodic arrays is delocalization of the frontier molecular orbitals through the saturated tricyclic cores of the monomers that spans the entire system. The electronic band structure for the 1-D wire reveals significant dispersion and can be tuned from the insulating regime to the semiconducting regime by suitable chemical functionalization of the core. The theoretical understanding of this new class of supramolecular structures sets the stage for the tailored design of novel functional materials that are alternative to those comprised of traditional -conjugated systems},
doi = {10.1021/jp076329p},
journal = {Journal of Physical Chemistry C},
number = 51,
volume = 111,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • Here, we present a scalable cross-platform hybrid MPI/OpenMP/OpenACC implementation of the Divide–Expand–Consolidate (DEC) formalism with portable performance on heterogeneous HPC architectures. The Divide–Expand–Consolidate formalism is designed to reduce the steep computational scaling of conventional many-body methods employed in electronic structure theory to linear scaling, while providing a simple mechanism for controlling the error introduced by this approximation. Our massively parallel implementation of this general scheme has three levels of parallelism, being a hybrid of the loosely coupled task-based parallelization approach and the conventional MPI +X programming model, where X is either OpenMP or OpenACC. We demonstrate strong and weak scalabilitymore » of this implementation on heterogeneous HPC systems, namely on the GPU-based Cray XK7 Titan supercomputer at the Oak Ridge National Laboratory. Using the “resolution of the identity second-order Moller–Plesset perturbation theory” (RI-MP2) as the physical model for simulating correlated electron motion, the linear-scaling DEC implementation is applied to 1-aza-adamantane-trione (AAT) supramolecular wires containing up to 40 monomers (2440 atoms, 6800 correlated electrons, 24 440 basis functions and 91 280 auxiliary functions). This represents the largest molecular system treated at the MP2 level of theory, demonstrating an efficient removal of the scaling wall pertinent to conventional quantum many-body methods.« less
  • Cited by 4
  • The bis-complexes [Cu(L{sub dt}){sub 2}](OTf){sub 2} ( 1) and [Cu(L{sub ot}){sub 2}](OTf){sub 2} ( 2), where L{sub dt} = 1-dodecyl-1,4,7-triazacyclononane, L{sup ot} = 1-octadecyl-1,4,7-triazacyclononane and OTf = trifluoromethanesulfonate, formed a novel class of metallo-liposomes in water that transfect pEGFP-N1 plasmids into HEK 293-T cells at 38% and 4% efficiency, respectively.
  • Hybrid Class 1/Class 2 supported amine CO 2 sorbents demonstrate superior performance under practical steam conditions, yet their amine immobilization and stabilization mechanisms are unclear. Uncovering the interactions responsible for the sorbents’ robust features is critical for further improvements and can facilitate practical applications. We employ solid state 29Si CP-MAS and 2-D FSLG 1H– 13C CP HETCOR NMR spectroscopies to probe the overall molecular interactions of aminosilane/silica, polyamine [poly(ethylenimine), PEI]/silica, and hybrid aminosilane/PEI/silica sorbents. A unique, sequential impregnation sorbent preparation method is executed in a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) setup to decouple amine binding mechanisms at themore » amine–silica interface from those within bulk amine layers. These mechanisms are correlated with each sorbents’ resistance to accelerated liquid H 2O and TGA steam treatments (H 2O stability) and to oxidative degradation (thermal stability). High percentages of CO 2 capture retained (PCR) and organic content retained (OCR) values after H 2O testing of N-(3-(trimethoxysilyl)propyl)ethylenediamine (TMPED)/PEI and (3-aminopropyl)trimethoxysilane (APTMS)/PEI hybrid sorbents are associated with a synergistic stabilizing effect of the amine species observed during oxidative degradation (thermal gravimetric analysis-differential scanning calorimetry, TGA-DSC). Solid state NMR spectroscopy reveals that the synergistic effect of the TMPED/PEI mixture is manifested by the formation of hydrogen-bonded PEI–NH 2···NH 2–TMPED and PEI–NH 2···HO–Si/O–Si–O (TMPED, T 2) linkages within the sorbent. DRIFTS further determines that PEI enhances the grafting of TMPED to silica and that PEI is dispersed among a stable network of polymerized TMPED in the bulk, utilizing H-bonded linkages. These findings provide the scientific basis for establishing a Class 4 category for aminosilane/polyamine/silica hybrid sorbents.« less