skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Countercurrent Process for Lignin Separation from Biomass Matrix

Abstract

The overall goal of the project was to test the concept of using a twin-screw extruder to conduct autohydrolysis pretreatment of wheat straw in countercurrent fashion, demonstrate in situ solid/liquid separation, and produce a low-lignin cellulose product using ethanol as an extractant. The resultant solid product is suitable for sugar production through enzymatic hydrolysis and for pulp applications. Pilot-scale equipment was used to successfully demonstrate the process both for sugar and pulp applications.

Authors:
;
Publication Date:
Research Org.:
PureVision Technology, Inc.
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
958686
Report Number(s):
DOE/ER/84334-1
TRN: US201003%%713
DOE Contract Number:
FG02-05ER84334
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; AUTOHYDROLYSIS; BIOMASS; CELLULOSE; ENZYMATIC HYDROLYSIS; ETHANOL; LIGNIN; PRODUCTION; SACCHAROSE; STRAW; WHEAT; Lignin separation from Biomass

Citation Formats

Kiran Kadam, and Ed Lehrburger. Countercurrent Process for Lignin Separation from Biomass Matrix. United States: N. p., 2006. Web. doi:10.2172/958686.
Kiran Kadam, & Ed Lehrburger. Countercurrent Process for Lignin Separation from Biomass Matrix. United States. doi:10.2172/958686.
Kiran Kadam, and Ed Lehrburger. Fri . "Countercurrent Process for Lignin Separation from Biomass Matrix". United States. doi:10.2172/958686. https://www.osti.gov/servlets/purl/958686.
@article{osti_958686,
title = {Countercurrent Process for Lignin Separation from Biomass Matrix},
author = {Kiran Kadam and Ed Lehrburger},
abstractNote = {The overall goal of the project was to test the concept of using a twin-screw extruder to conduct autohydrolysis pretreatment of wheat straw in countercurrent fashion, demonstrate in situ solid/liquid separation, and produce a low-lignin cellulose product using ethanol as an extractant. The resultant solid product is suitable for sugar production through enzymatic hydrolysis and for pulp applications. Pilot-scale equipment was used to successfully demonstrate the process both for sugar and pulp applications.},
doi = {10.2172/958686},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 31 00:00:00 EST 2006},
month = {Fri Mar 31 00:00:00 EST 2006}
}

Technical Report:

Save / Share:
  • Production of pure sugars is required to enable production of fuels and chemicals from biomass feedstocks. Hydrolysis of cellulose and hemicellulose (principal constituents of biomass) produces sugars that can be utilized in various fermentation process to produce valuable chemicals. Unfortunately, the hydrolysis process also liberates chemicals from the biomass that can be toxic to the fermenting organisms. The two primary toxic components of biomass hydrolyzate are sulfuric acid (catalyst used in the hydrolysis) and acetic acid (a component of the feed biomass). In the standard batch chromatographic separation of these three components, sugar elutes in the middle. Batch chromatographic separationsmore » are not practical on a commercial scale, because of excess dilution and high capital costs. Because sugar is the {open_quotes}center product,{close_quotes} a continuous separation would require two costly binary separators. However, a single, slightly larger separator, configured to produce three products, would be more economical. This FIRST project develops a cost-effective method for purifying biomass hydrolyzate into fermentable sugars using a single continuous countercurrent separator to separate this ternary mixture.« less
  • This report evaluates lignin’s role as a renewable raw material resource. Opportunities that arise from utilizing lignin fit into one of three categories: 1)power, fuel and syngas (generally near-term opportunities) 2) macromolecules (generally medium-term opportunities) 3) aromatics and miscellaneous monomers (long-term opportunities). Biorefineries will receive and process massive amounts of lignin. For this reason, how lignin can be best used to support the economic health of the biorefinery must be defined. An approach that only considers process heat would be shortsighted. Higher value products present economic opportunities and the potential to significantly increase the amount of liquid transportation fuel availablemore » from biomass. In this analysis a list of potential uses of lignin was compiled and sorted into “product types” which are broad classifications (listed above as power—fuel—syngas; macromolecules; and aromatics). In the first “product type” (power—fuel—gasification) lignin is used purely as a carbon source and aggressive means are employed to break down its polymeric structure. In the second “product type” (macromolecules) the opposite extreme is considered and advantage of the macromolecular structure imparted by nature is retained in high-molecular weight applications. The third “product type” (aromatics) lies somewhere between the two extremes and employs technologies that would break up lignin’s macromolecular structure but maintain the aromatic nature of the building block molecules. The individual opportunities were evaluated based on their technical difficulty, market, market risk, building block utility, and whether a pure material or a mixture would be produced. Unlike the “Sugars Top 10” report it was difficult to identify the ten best opportunities, however, the potential opportunities fell nicely into near-, medium- and long-term opportunities. Furthermore, the near-, medium- and long-term opportunities roughly align with the three “product types.” From this analysis a list of technical barriers was developed which can be used to identify research needs. Lignin presents many challenges for use in the biorefinery. Chemically it differs from sugars having a complex aromatic substructure. Unlike cellulose, which has a relatively simple substructure of glucose subunits, lignin has a high degree of variability in its structure which differs both from biomass source and from the recovery process used. In addition to its variability lignin is also reactive and to some degree less stable thermally and oxidatively to other biomass streams. What this means is that integrating a lignin process stream within the biorefinery will require identifying the best method to separate lignin from biomass cost-effectively.« less