skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of B3LYP, X3LYP, and M06-Class Density Functionals for Predicting the Binding Energies of Neutral, Protonated, and Deprotonated Water Clusters

Journal Article · · Journal of Chemical Theory and Computation, 5(4):1016-1026
DOI:https://doi.org/10.1021/ct800549f· OSTI ID:958437

We report the results of density functional theory calculations on nanostructures of SiC, including single clusters, cluster dimers, and nanoporous cluster frameworks. Our results show that at the nanoscale, there is significant charge transfer of 2.5|e| from Si to C atoms, which results in the adoption of the same structural motifs for nanoparticles of SiC that occur for ZnO, with clusters of Th, Td, and O symmetry. Experimental support for our models is provided by comparison of optical gaps and ionisation potentials. With the exception of the (SiC)28 cluster, the Th or Td nanoparticles can bind into kinetically stable agglomerates on either tetragonal or hexagonal faces, with tetragonal binding energetically preferred for larger nanoclusters, which enables the construction of cubic nanoporous frameworks of varying porosities. Frameworks composed of larger clusters are softer; with bulk moduli of ca. 20 GPa while frameworks assembled from smaller clusters tend to be harder. The electronic structure of all frameworks can be analysed in terms of the adopted short-range order of the clusters, we predict that frameworks containing topological features similar to the rock-salt phase are metallic in nature.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
958437
Journal Information:
Journal of Chemical Theory and Computation, 5(4):1016-1026, Vol. 5, Issue 4
Country of Publication:
United States
Language:
English