skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Global net primary production and heterotrophic respiration for 1987

Journal Article · · Bulletin of the Ecological Society of America
OSTI ID:95810
; ;  [1]
  1. Univ. of Montana, Missoula, MT (United States)

An ecosystem process model, BIOME-BGC, was parameterized and used to simulate the actual net primary production and heterotrophic respiration using daily climatic data, land cover type, leaf area index gridded to 1{degree} latitude by 1{degree} longitude grid cells for the year 1987. Global net primary production was 52 Pg C. These estimates were validated directly by two different methods. First, the grid cells were aggregated and used as inputs to a 3D atmospheric transport model, to compare CO{sub 2} station data with predictions. We simulated the intra-annual variation of atmospheric CO{sub 2} well for the northern hemisphere, but not for the southern hemisphere. Second, we calculated the net {sup 13}C uptake of vegetation, which is a function of water use efficiency. The {sup 13}C/{sup 12}C ratios agreed with measured data, indicating a strong limitation of global primary processes by the hydrologic cycle, especially precipitation. These are different from other global carbon models as we can simulate the year-to-year variation of climate, including El Nino, on the global carbon cycle.

OSTI ID:
95810
Report Number(s):
CONF-9507129-; ISSN 0012-9623; TRN: 95:004728-0075
Journal Information:
Bulletin of the Ecological Society of America, Vol. 76, Issue 2; Conference: 80. anniversary of the transdisciplinary nature of ecology, Snowbird, UT (United States), 30 Jul - 3 Aug 1995; Other Information: PBD: Jun 1995
Country of Publication:
United States
Language:
English