skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

Abstract

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factorsmore » and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.« less

Authors:
Publication Date:
Research Org.:
Idaho National Laboratory (INL)
Sponsoring Org.:
DOE - NE
OSTI Identifier:
957530
Report Number(s):
INL/EXT-09-15254
TRN: US1000448
DOE Contract Number:
DE-AC07-99ID-13727
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
22 GENERAL STUDIES OF NUCLEAR REACTORS; 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; BURNERS; CAPITAL; DECOMMISSIONING; DECONTAMINATION; ECONOMIC ANALYSIS; ELECTRICITY; FABRICATION; FAST REACTORS; FEEDBACK; FUEL CYCLE; NUCLEAR ENERGY; OPEN-CYCLE SYSTEMS; RECYCLING; SYSTEMS ANALYSIS; WASTES; fuel cycle economics fast reactor

Citation Formats

D. E. Shropshire. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems. United States: N. p., 2009. Web. doi:10.2172/957530.
D. E. Shropshire. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems. United States. doi:10.2172/957530.
D. E. Shropshire. 2009. "Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems". United States. doi:10.2172/957530. https://www.osti.gov/servlets/purl/957530.
@article{osti_957530,
title = {Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems},
author = {D. E. Shropshire},
abstractNote = {The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.},
doi = {10.2172/957530},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2009,
month = 1
}

Technical Report:

Save / Share:
  • A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWRmore » fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle costs are included in the analysis, with the fast reactors having a higher $/kw(e) capital cost than the LWRs, the overall busbar generation cost ($/MWh) for the closed cycles is approximately 12% higher than for the all-LWR once-through fuel cycle case, again based on the expected values from an uncertainty analysis. It should be noted that such a percentage increase in the cost of nuclear power is much smaller than that expected for fossil fuel electricity generation if CO2 is costed via a carbon tax, cap and trade regimes, or carbon capture and sequestration (CCS).« less
  • The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactormore » on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.« less
  • A preliminary study by a group of experts at ORNL has generated and evaluated a number of aqueous and non-aqueous flowsheets for recovering transuranium actinides from LWR fuel for use as fuel in an LMR and, at the same time, for transmutation of the wastes to less hazardous materials. The need for proliferation resistance was a consideration in the flowsheets. The current state of development of the flowsheets was evaluated and recommendations for additional study were made. 3 refs., 6 figs.
  • A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. Thismore » report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates that the proposed solutions to the investigated operating cycle length barriers are both feasible and consistent with sound design practice.« less
  • A study has been performed to evaluate the use of high-energy particle accelerators as nuclear fuel enrichers and nuclear fuel regenerators. This builds on ideas that have been current for many years. The new study has, however, explored some novel approaches that have not been examined before. A specific conceptual system chosen for more detailed study would stretch the energy available from natural uranium by a factor of about 3, reduce the separative work requirements by a factor of about 4, and reduce the volume of spent fuel to be stored by a factor of 2, compared to the currentmore » once-through light water reactor (LWR) fuel cycle. The concept avoids the need for chemical reprocessing of spent fuel, and would permit continued use of LWR's beyond the time when limitations on fuel resources might otherwise lead to their being phased out. This concept, which is called the Linear Accelerator Fuel Enricher/Regenerator, is therefore viewed as offering a practical means of stretching the use of the nuclear fuel resource in the framework of the existing light water reactor fuel cycle. This report describes and analyzes the concept referred to. An explanation of the principles underlying the concept is given. Particular attention is devoted to engineering feasibility, proliferation resistance, and economics. It is seen that the concept draws on only proven technology as regards bothaccelerator design and the fuel irradiation process, and is adapted to existing LWR designs with no change except in fuel-handling practices. A preliminary evaluation of radiation damage, coolant options, and power conversion systems is provided. Neutronic, thermal-hydraulic, and burnup calculations are presented. An analysis is made of fuel economy. Approximate costs of electric power produced using this concept are evaluated and discussed. Estimated development costs of commercialization are provided.« less