skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

Journal Article · · Journal of American Chemical Society
OSTI ID:957035

Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl(tetradecyl)ammonium bromide (TTAB) effectively stabilize the {l_brace}100{r_brace} faces of Rh NCs, and induce the evolution of nanocubes (Scheme 1). For a typical synthesis, 0.2 mmol RhCl{sub 3} hydrate, 1 mmol TTAB, and 4 mmol poly(vinylpyrrolidone) (PVP, Mw = 24,000), were added to 20 ml ethylene glycol at room temperature. The stock solution was heated to 80 C and purged for 20 min while stirring, producing a dark brown solution. The flask was then heated to 185 C and maintained at this temperature for 1.5 h under an Ar atmosphere. When the reaction was complete, an excess of acetone was added to the solution at room temperature to precipitate the nanocubes. The Rh nanocubes were separated by centrifugation and washed twice by precipitation/dissolution with ethanol/hexanes.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
Chemical Sciences Division
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
957035
Report Number(s):
LBNL-1229E; TRN: US201002%%909
Journal Information:
Journal of American Chemical Society, Vol. 130; Related Information: Journal Publication Date: 2008; ISSN 0002-7863
Country of Publication:
United States
Language:
English