skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solvent mediated assembly of nanoparticles confined in mesoporous alumina.

Abstract

The controlled self-assembly of thiol stabilized gold nanocrystals in a mediating solvent and confined within mesoporous alumina was probed in situ with small angle x-ray scattering. The evolution of the self-assembly process was controlled reversibly via regulated changes in the amount of solvent condensed from an undersaturated vapor. Analysis indicated that the nanoparticles self-assembled into cylindrical monolayers within the porous template. Nanoparticle nearest-neighbor separation within the monolayer increased and the ordering decreased with the controlled addition of solvent. The process was reversible with the removal of solvent. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappeared upon complete removal of liquid. Measurements of the absorption and desorption of the solvent showed strong hysteresis upon thermal cycling. In addition, the capillary filling transition for the solvent in the nanoparticle-doped pores was shifted to larger chemical potential, relative to the liquid/vapor coexistence, by a factor of 4 as compared to the expected value for the same system without nanoparticles.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC)
OSTI Identifier:
953448
Report Number(s):
ANL/CNM/JA-56747
Journal ID: ISSN 1098-0121; TRN: US200915%%88
DOE Contract Number:
DE-AC02-06CH11357
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. B, Condensed Matter and Materials Physics; Journal Volume: 73; Journal Issue: 9 ; 2006
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; ALUMINIUM OXIDES; POROUS MATERIALS; NANOSTRUCTURES; GOLD; THIOLS; SOLVENTS; ABSORPTION; DESORPTION

Citation Formats

Alvine, K. J., Pontoni, D., Shpyrko, O. G., Pershan, P. S., Cookson, D. J., Shin, K., Russell, T. P., Brunnbauer, M., Stellacci, F., Gang, O., BNL, Massachusetts Inst. of Tech., Univ. of Massachusetts, Harvard Univ., and Univ. Massachusetts. Solvent mediated assembly of nanoparticles confined in mesoporous alumina.. United States: N. p., 2006. Web. doi:10.1103/PhysRevB.73.125412.
Alvine, K. J., Pontoni, D., Shpyrko, O. G., Pershan, P. S., Cookson, D. J., Shin, K., Russell, T. P., Brunnbauer, M., Stellacci, F., Gang, O., BNL, Massachusetts Inst. of Tech., Univ. of Massachusetts, Harvard Univ., & Univ. Massachusetts. Solvent mediated assembly of nanoparticles confined in mesoporous alumina.. United States. doi:10.1103/PhysRevB.73.125412.
Alvine, K. J., Pontoni, D., Shpyrko, O. G., Pershan, P. S., Cookson, D. J., Shin, K., Russell, T. P., Brunnbauer, M., Stellacci, F., Gang, O., BNL, Massachusetts Inst. of Tech., Univ. of Massachusetts, Harvard Univ., and Univ. Massachusetts. Sun . "Solvent mediated assembly of nanoparticles confined in mesoporous alumina.". United States. doi:10.1103/PhysRevB.73.125412.
@article{osti_953448,
title = {Solvent mediated assembly of nanoparticles confined in mesoporous alumina.},
author = {Alvine, K. J. and Pontoni, D. and Shpyrko, O. G. and Pershan, P. S. and Cookson, D. J. and Shin, K. and Russell, T. P. and Brunnbauer, M. and Stellacci, F. and Gang, O. and BNL and Massachusetts Inst. of Tech. and Univ. of Massachusetts and Harvard Univ. and Univ. Massachusetts},
abstractNote = {The controlled self-assembly of thiol stabilized gold nanocrystals in a mediating solvent and confined within mesoporous alumina was probed in situ with small angle x-ray scattering. The evolution of the self-assembly process was controlled reversibly via regulated changes in the amount of solvent condensed from an undersaturated vapor. Analysis indicated that the nanoparticles self-assembled into cylindrical monolayers within the porous template. Nanoparticle nearest-neighbor separation within the monolayer increased and the ordering decreased with the controlled addition of solvent. The process was reversible with the removal of solvent. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappeared upon complete removal of liquid. Measurements of the absorption and desorption of the solvent showed strong hysteresis upon thermal cycling. In addition, the capillary filling transition for the solvent in the nanoparticle-doped pores was shifted to larger chemical potential, relative to the liquid/vapor coexistence, by a factor of 4 as compared to the expected value for the same system without nanoparticles.},
doi = {10.1103/PhysRevB.73.125412},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
number = 9 ; 2006,
volume = 73,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • The controlled self-assembly of thiol stabilized gold nanocrystals in a mediating solvent and confined within mesoporous alumina was probed in situ with small angle x-ray scattering. The evolution of the self-assembly process was controlled reversibly via regulated changes in the amount of solvent condensed from an undersaturated vapor. Analysis indicated that the nanoparticles self-assembled into cylindrical monolayers within the porous template. Nanoparticle nearest-neighbor separation within the monolayer increased and the ordering decreased with the controlled addition of solvent. The process was reversible with the removal of solvent. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption ofmore » the liquid solvent and disappeared upon complete removal of liquid. Measurements of the absorption and desorption of the solvent showed strong hysteresis upon thermal cycling. In addition, the capillary filling transition for the solvent in the nanoparticle-doped pores was shifted to larger chemical potential, relative to the liquid/vapor coexistence, by a factor of 4 as compared to the expected value for the same system without nanoparticles.« less
  • DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, individual colloidal plasmonic nanoparticles with different shapes and sizes are assembled with ‘locked” nucleic acids in polymer pores into oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer and micrometer length scales. These structures, which would be difficult to construct via other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach is explored by identifying amore » broadband absorber with a solvent polarity response that allows dynamic tuning of the wavelength response and amplitude of visible light absorption.« less
  • Evaporation-induced self-assembly (EISA) of silica sol-gel ethanol-water solution mixtures with block-copolymer were studied inside uniform micro/nano channels. Nano-structured mesoporous silica wires, with various intra-wire self-assembly structures including lamellae, were prepared via EISA process but in space-confined channels with the diameter ranging from 50 nm to 200 nm. Membranes made of anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC) were utilized as the arrays of space-confined channels (i.e., 50, 100, and 200-nm EPC and 200-nm AAO) for infiltration and drying of mixture solutions; these substrate membranes were submerged in mixture solutions consisting of a silica precursor, a structure-directing agent, ethanol, andmore » water. After the substrate channels were filled with the solution under vacuum impregnation, the membrane was removed from the solution and dried in air. The silica precursor used was tetra-ethyl othosilicate (TEOS), and the structure-directing agent employed was triblock copolymer Pluronic-123 (P123). It was found that the formation of the mesoporous nanostructures in silica wires within uniform channels were significantly affected by the synthesis conditions including (1) pre-assemble TEOS aging time, (2) the evaporation rate during the vacuum impregnation, and (3) the air-dry temperature. The obtained intra-wire structures, including 2D-hexagonal rods and lamellae, were studied by scanning transmission electron microscopy (STEM). A steric hindrance effect seems to explain well the observed polymer-silica mesophase formation tailored by TEOS aging time. The evaporation effect, air-drying effect, and AAO-vs-EPC substrate effect on the mesoporous structure of the formed silica wires were also presented and discussed.« less