skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Revised thermodynamic properties of brucite determined by solubility studies and its significance to nuclear waste isolation.

Abstract

MgO is the only engineered barrier certified by EPA for the Waste Isolation Pilot Plant (WIPP) in USA. The German Asse repository will also employ an Mg(OH){sub 2} (brucite)-based engineered barrier. The chemical function of the engineered barrier is to consume CO{sub 2} that may be generated by the microbial degradation of organic materials in waste packages. Experimental results at SNL indicate that MgO is first hydrated as brucite, and then brucite is carbonated as hydromagnesite (5424) (Mg{sub 5}(CO{sub 3}){sub 4}(OH){sub 2} {center_dot} 4H{sub 2}O). As MgO is in excess relative to CO{sub 2} that may be produced, the brucite-hydromagnesite (5424) assemblage would buffer f{sub CO2} in the repository. Consequently, the thermodynamic properties of this assemblage is of great significance to the performance assessment (PA) as actinide solubility is strongly affected by f{sub CO2}. In turn, PA is important to the demonstration of the long-term safety of nuclear waste repositories, as assessed by the use of probabilistic performance calculations. There is a substantial discrepancy for {Delta}{sub f}G{sub brucite}{sup 0} in recent publications, ranging from -830.4 (Harvie et al., 1984; Geochim. Cosmochim. Acta, 723-751), through -831.9 (Brown et al., 1996; J. Chem. Soc., Dalton Trans., 3071-3075), through -833.5 (Robie and Hemingway,more » 1995; USGS Bull., 2131), and to -835.9 kJ mol{sup -1} (Konigsberger et al., 1999; Geochim. Cosmochim. Acta, 3105-3119). Using the {Delta}{sub f}G{sub hydromagnesite (5424)}{sup 0} from Konigsberger et al., the predicted log f{sub CO2} for this assemblage would range from -5.96 ({Delta}{sub f}G{sub brucite}{sup 0} from Harvie et al.) to -4.84 ({Delta}{sub f}G{sub brucite}{sup 0} from Konigsberger et al.). Therefore, it is desirable to better constrain the {Delta}{sub f}G{sub brucite}{sup 0}. For this reason, a series of solubility experiments involving brucite in NaCl solutions ranging from 0.01 M to 4.0 M have being conducted at SNL. The derived {Delta}{sub f}G{sub brucite}{sup 0} from this study by extrapolation to infinite dilution via Pitzer formalism is -830.8 kJ mol{sup -1}, which is in excellent agreement with recommended values of Harvie et al. and Brown et al.« less

Authors:
Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
USDOE
OSTI Identifier:
952366
Report Number(s):
SAND2007-3373J
TRN: US0902473
DOE Contract Number:
AC04-94AL85000
Resource Type:
Journal Article
Resource Relation:
Journal Name: Proposed for publication in Chemical Geology.
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; ACTINIDES; BUFFERS; DILUTION; EXTRAPOLATION; PERFORMANCE; RADIOACTIVE WASTES; SAFETY; SOLUBILITY; THERMODYNAMIC PROPERTIES; US EPA; USA; WASTES; WIPP

Citation Formats

Xiong, Yongliang. Revised thermodynamic properties of brucite determined by solubility studies and its significance to nuclear waste isolation.. United States: N. p., 2007. Web.
Xiong, Yongliang. Revised thermodynamic properties of brucite determined by solubility studies and its significance to nuclear waste isolation.. United States.
Xiong, Yongliang. Tue . "Revised thermodynamic properties of brucite determined by solubility studies and its significance to nuclear waste isolation.". United States. doi:.
@article{osti_952366,
title = {Revised thermodynamic properties of brucite determined by solubility studies and its significance to nuclear waste isolation.},
author = {Xiong, Yongliang},
abstractNote = {MgO is the only engineered barrier certified by EPA for the Waste Isolation Pilot Plant (WIPP) in USA. The German Asse repository will also employ an Mg(OH){sub 2} (brucite)-based engineered barrier. The chemical function of the engineered barrier is to consume CO{sub 2} that may be generated by the microbial degradation of organic materials in waste packages. Experimental results at SNL indicate that MgO is first hydrated as brucite, and then brucite is carbonated as hydromagnesite (5424) (Mg{sub 5}(CO{sub 3}){sub 4}(OH){sub 2} {center_dot} 4H{sub 2}O). As MgO is in excess relative to CO{sub 2} that may be produced, the brucite-hydromagnesite (5424) assemblage would buffer f{sub CO2} in the repository. Consequently, the thermodynamic properties of this assemblage is of great significance to the performance assessment (PA) as actinide solubility is strongly affected by f{sub CO2}. In turn, PA is important to the demonstration of the long-term safety of nuclear waste repositories, as assessed by the use of probabilistic performance calculations. There is a substantial discrepancy for {Delta}{sub f}G{sub brucite}{sup 0} in recent publications, ranging from -830.4 (Harvie et al., 1984; Geochim. Cosmochim. Acta, 723-751), through -831.9 (Brown et al., 1996; J. Chem. Soc., Dalton Trans., 3071-3075), through -833.5 (Robie and Hemingway, 1995; USGS Bull., 2131), and to -835.9 kJ mol{sup -1} (Konigsberger et al., 1999; Geochim. Cosmochim. Acta, 3105-3119). Using the {Delta}{sub f}G{sub hydromagnesite (5424)}{sup 0} from Konigsberger et al., the predicted log f{sub CO2} for this assemblage would range from -5.96 ({Delta}{sub f}G{sub brucite}{sup 0} from Harvie et al.) to -4.84 ({Delta}{sub f}G{sub brucite}{sup 0} from Konigsberger et al.). Therefore, it is desirable to better constrain the {Delta}{sub f}G{sub brucite}{sup 0}. For this reason, a series of solubility experiments involving brucite in NaCl solutions ranging from 0.01 M to 4.0 M have being conducted at SNL. The derived {Delta}{sub f}G{sub brucite}{sup 0} from this study by extrapolation to infinite dilution via Pitzer formalism is -830.8 kJ mol{sup -1}, which is in excellent agreement with recommended values of Harvie et al. and Brown et al.},
doi = {},
journal = {Proposed for publication in Chemical Geology.},
number = ,
volume = ,
place = {United States},
year = {Tue May 01 00:00:00 EDT 2007},
month = {Tue May 01 00:00:00 EDT 2007}
}