skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transport Functions Dominate the SAR11 Metaproteome at Low-Nutrient Extremes in the Sargasso Sea

Journal Article · · The ISME Journal, 3(1):93-105

The northwestern Sargasso Sea is part of the North Atlantic subtropical oceanic gyre that is characterized as seasonally oligotrophic with pronounced stratification in the summer and autumn. Essentially a marine desert, the biological productivity of this region is reduced during stratified periods as a result of low concentrations of phosphorous and nitrogen in the euphotic zone. To better understand the mechanisms of microbial survival in this oligotrophic environment, we used capillary LC-tandem mass spectrometry to study the composition of microbial proteomes in surface samples collected in September 2005. A total of 2279 peptides that mapped to 236 SAR11 proteins, and 3208 peptides that mapped to 404 Synechococcus proteins, were detected. Mass spectra from SAR11 periplasmic binding proteins accounted for a disproportionately large fraction of the peptides detected, consistent with observations that these extremely small cells devote a large proportion of their volume to periplasm. Abundances were highest for periplasmic substrate-binding proteins for phosphate, amino acids, phosphonate, sugars, and spermidine. Although the data showed that a large fraction of microbial protein synthesis in the Sargasso Sea is devoted to inorganic and organic nutrient acquisition, the proteomes of both SAR11 and Synechococcus also indicated that these populations were actively growing. Our findings support the view that competition for multiple nutrients in oligotrophic systems is extreme but sufficient to sustain microbial community activity.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
949891
Report Number(s):
PNNL-SA-60995; 18427; KP1501021; TRN: US200909%%526
Journal Information:
The ISME Journal, 3(1):93-105, Vol. 3, Issue 1
Country of Publication:
United States
Language:
English