skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Studies of the Active Sites for Methane Dehydroaromatization Using Ultrahigh-Field Solid-State Mo95 NMR Spectroscopy

Journal Article · · Journal of Physical Chemistry C, 113(7):2936-2942
DOI:https://doi.org/10.1021/jp8107914· OSTI ID:949069

Abstract It is found that the spin-lattice relaxation time, T1, corresponding to the surface exchanged molybdenum species in Mo/HZSM-5 catalysts is short, i.e., less than about 100ms at 21.1 T while the value of T1 for the crystallite MoO3 molecules is longer, i.e., about 30 s. Such a difference, more than two orders in magnitude, is utilized to differentiate the exchanged Mo species from the agglomerate MoO3 in Mo/HZSM-5 catalyst. An approximately linear correlation between the amount of exchanged species and the aromatics formation rate is obtained. This result significantly strengthens our prior conclusion that the exchanged Mo species are the active centers for the methane dehydroaromatization reaction on Mo/HZSM-5 catalysts (J. Am. Chem. Soc. 2008, 130, 3722-3723). Our results also suggest that one exchanged Mo atom anchors on two ion exchange sites and the exchanged Mo species on catalysts are possibly monomeric. Analyzing the linshapes obtained from both the 95Mo MAS and the static spectra indicates that the exchanged sites are heterogeneous, resulting in a significantly broadened MAS spectrum and essentially a featureless but nearly symmetric static lineshape for the exchanged Mo species. Furthermore, for crystallite MoO3 powder sample, the parameters related to the electric-field-gradient (EFG) tensor, the chemical shift anisotropy (CSA) and the three Euler angles required to align the CSA principal axis system with the quadrupolar principal axis system are determined by analyzing both the 95Mo MAS and the static spectra obtained at ultra-high field of 21.1 T. The new results obtained from this study on crystallite MoO3 powders should help to clarify some of the contradictions in prior literature reports from other groups. Key words: 95Mo NMR, MAS, relaxation, surface exchanged species, HZSM-5, electric-field-gradient (EFG), chemical shift anisotropy (CSA), active centers.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
949069
Report Number(s):
PNNL-SA-62099; 19795; 35599; KC0302010; TRN: US200907%%386
Journal Information:
Journal of Physical Chemistry C, 113(7):2936-2942, Vol. 113, Issue 7; ISSN 1932-7447
Country of Publication:
United States
Language:
English