skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Autofocus correction of SAR images exhibiting excessive residual migration.

Abstract

Relatively small motion measurement errors manifest themselves principally as a phase error in Synthetic Aperture Radar (SAR) complex data samples, and if large enough become observable as a smearing, blurring, or other degradation in the image. The phase error function can be measured and then deconvolved from the original data to compensate for the presumed motion error, ultimately resulting in a well-focused image. Techniques that do this are termed 'autofocus' algorithms. A very popular autofocus algorithm is the Phase Gradient Autofocus (PGA) algorithm. The nearly universal, and typically reasonable, assumption is that the motion errors are less than the range resolution of the radar, allowing solely a phase correction to suffice. Very large relative motion measurement errors manifest themselves as an unexpected additional shifting or migration of target locations beyond any deterministic migration during the course of the synthetic aperture. Degradation in images from data exhibiting errors of this magnitude are substantial, often rendering the image completely useless. When residual range migration due to either real or apparent motion errors exceeds the range resolution, conventional autofocus algorithms fail. Excessive residual migration is increasingly encountered as resolutions become finer, less expensive inertial sensors are used, and operating ranges become longer (duemore » to atmospheric phenomena). A new migration-correction autofocus algorithm has been developed that estimates the excessive residual migration and applies phase and frequency corrections to properly focus the image. This overcomes the conventional constraint that motion errors not exceed the SAR range resolution.« less

Authors:
Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
USDOE
OSTI Identifier:
948677
Report Number(s):
SAND2005-1598C
TRN: US200907%%152
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the SPIE Defense & Security Symposium 2005 held March 28-April 1, 2005 in Orlando, FL.
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; ALGORITHMS; RADAR; RESOLUTION; CORRECTIONS; FOCUSING; AUTOMATION; IMAGE PROCESSING

Citation Formats

Doerry, Armin Walter. Autofocus correction of SAR images exhibiting excessive residual migration.. United States: N. p., 2005. Web.
Doerry, Armin Walter. Autofocus correction of SAR images exhibiting excessive residual migration.. United States.
Doerry, Armin Walter. Tue . "Autofocus correction of SAR images exhibiting excessive residual migration.". United States.
@article{osti_948677,
title = {Autofocus correction of SAR images exhibiting excessive residual migration.},
author = {Doerry, Armin Walter},
abstractNote = {Relatively small motion measurement errors manifest themselves principally as a phase error in Synthetic Aperture Radar (SAR) complex data samples, and if large enough become observable as a smearing, blurring, or other degradation in the image. The phase error function can be measured and then deconvolved from the original data to compensate for the presumed motion error, ultimately resulting in a well-focused image. Techniques that do this are termed 'autofocus' algorithms. A very popular autofocus algorithm is the Phase Gradient Autofocus (PGA) algorithm. The nearly universal, and typically reasonable, assumption is that the motion errors are less than the range resolution of the radar, allowing solely a phase correction to suffice. Very large relative motion measurement errors manifest themselves as an unexpected additional shifting or migration of target locations beyond any deterministic migration during the course of the synthetic aperture. Degradation in images from data exhibiting errors of this magnitude are substantial, often rendering the image completely useless. When residual range migration due to either real or apparent motion errors exceeds the range resolution, conventional autofocus algorithms fail. Excessive residual migration is increasingly encountered as resolutions become finer, less expensive inertial sensors are used, and operating ranges become longer (due to atmospheric phenomena). A new migration-correction autofocus algorithm has been developed that estimates the excessive residual migration and applies phase and frequency corrections to properly focus the image. This overcomes the conventional constraint that motion errors not exceed the SAR range resolution.},
doi = {},
url = {https://www.osti.gov/biblio/948677}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2005},
month = {3}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: