skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: LLNL Site 200 Risk Management PlanAgust 2008

Abstract

It is the Lawrence Livermore National Laboratory's (LLNL) policy to perform work in a manner that protects the health and safety of employees and the public, preserves the quality of the environment, and prevents property damage using the Integrated Safety Management System. The environment, safety, and health are to take priority in the planning and execution of work activities at the Laboratory. Furthermore, it is the policy of LLNL to comply with applicable ES&H laws, regulations, and requirements (LLNL Environment, Safety and Health Manual, Document 1.2, ES&H Policies of LLNL). The program and policies that improve LLNL's ability to prevent or mitigate accidental releases are described in the LLNL Environment, Health, and Safety Manual that is available to the public. The laboratory uses an emergency management system known as the Incident Command System, in accordance with the California Standardized Emergency Management System (SEMS) to respond to Operational Emergencies and to mitigate consequences resulting from them. Operational Emergencies are defined as unplanned, significant events or conditions that require time-urgent response from outside the immediate area of the incident that could seriously impact the safety or security of the public, LLNL's employees, its facilities, or the environment. The Emergency Plan contains LLNL'smore » Operational Emergency response policies, commitments, and institutional responsibilities for managing and recovering from emergencies. It is not possible to list in the Emergency Plan all events that could occur during any given emergency situation. However, a combination of hazard assessments, an effective Emergency Plan, and Emergency Plan Implementing Procedures (EPIPs) can provide the framework for responses to postulated emergency situations. Revision 7, 2004 of the above mentioned LLNL Emergency Plan is available to the public. The most recent revision of the LLNL Emergency Plan LLNL-AM-402556, Revision 11, March 2008, has been included as an appendix to the RMP Supplemental Information document. LLNL Site 200 is a research and development laboratory with infrastructure necessary to support its operations and personnel. Research and development activities at LLNL are focused on stockpile stewardship; achieving robust and vital scientific, engineering, and manufacturing capability; inertial confinement fusion; laser technology; materials and process science; computational and information sciences; basic sciences; engineering sciences; and biological sciences. Based upon CalARP Program regulations, guidance found in California Accidental Release Prevention Program (CalARP) Administering Guidance, Chapter 1, a review of facility specific documents, accident analyses summarized in this document & detailed in the LLNL Site 200 RMP Supporting Information document, LLNL has determined that each process meeting the CalARP threshold criteria meets the requirements for CalARP Program Level 1. In accordance with CalARP regulations, LLNL considers the natural segmentation of processes at Site 200 to be on a building basis and therefore consideration of inventory should be on a building basis rather than a 'site-wide' basis. Only those materials identified as equal to as or greater than the threshold quantities for the CalARP program on a building (process) level are reflected in this document. As such, materials and quantities reported in this document on a building (process) level will vary from materials and quantities reported in the LLNL Hazardous Materials Business Plan, Acutely Hazardous Material Registration Form on a site-wide level. For each process involving regulated quantities of lithium hydride, worst case accident analysis shows that the toxic endpoint lies within the site boundaries. These analyses document that the nearest public receptor is beyond the distance to a toxic or flammable endpoint. Refer to the LLNL Site 200 RMP Supporting Information document for a more detailed explanation of the worst case accident analyses for these processes. For the process involving regulated quantities of nitric acid, worst case accident analysis predicts a hazard zone well within areas under the jurisdiction of the Department of Energy. This analysis documents that the nearest public receptor is beyond the distance to a toxic or flammable endpoint. Refer to the LLNL Site 200 RMP Supporting Information document for a more detailed explanation of the worst case accident analysis for this process. LLNL maintains an active program to protect workers, the public, and the environment from harm resulting from its activities. Its policies and technical directions for controlling all hazards that are present as a result of its operations are described in the LLNL Environment, Health, and Safety Manual (referenced above).« less

Authors:
;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
945753
Report Number(s):
LLNL-TR-406579
TRN: US0901235
DOE Contract Number:  
W-7405-ENG-48
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS; ACCIDENTS; BUSINESS; EMERGENCY PLANS; HAZARDOUS MATERIALS; INERTIAL CONFINEMENT; LASERS; LITHIUM HYDRIDES; MANAGEMENT; MANUFACTURING; NITRIC ACID; PERSONNEL; PLANNING; REGULATIONS; SAFETY; SECURITY; STOCKPILES

Citation Formats

Pinkston, D, and Johnson, M. LLNL Site 200 Risk Management PlanAgust 2008. United States: N. p., 2008. Web. doi:10.2172/945753.
Pinkston, D, & Johnson, M. LLNL Site 200 Risk Management PlanAgust 2008. United States. https://doi.org/10.2172/945753
Pinkston, D, and Johnson, M. 2008. "LLNL Site 200 Risk Management PlanAgust 2008". United States. https://doi.org/10.2172/945753. https://www.osti.gov/servlets/purl/945753.
@article{osti_945753,
title = {LLNL Site 200 Risk Management PlanAgust 2008},
author = {Pinkston, D and Johnson, M},
abstractNote = {It is the Lawrence Livermore National Laboratory's (LLNL) policy to perform work in a manner that protects the health and safety of employees and the public, preserves the quality of the environment, and prevents property damage using the Integrated Safety Management System. The environment, safety, and health are to take priority in the planning and execution of work activities at the Laboratory. Furthermore, it is the policy of LLNL to comply with applicable ES&H laws, regulations, and requirements (LLNL Environment, Safety and Health Manual, Document 1.2, ES&H Policies of LLNL). The program and policies that improve LLNL's ability to prevent or mitigate accidental releases are described in the LLNL Environment, Health, and Safety Manual that is available to the public. The laboratory uses an emergency management system known as the Incident Command System, in accordance with the California Standardized Emergency Management System (SEMS) to respond to Operational Emergencies and to mitigate consequences resulting from them. Operational Emergencies are defined as unplanned, significant events or conditions that require time-urgent response from outside the immediate area of the incident that could seriously impact the safety or security of the public, LLNL's employees, its facilities, or the environment. The Emergency Plan contains LLNL's Operational Emergency response policies, commitments, and institutional responsibilities for managing and recovering from emergencies. It is not possible to list in the Emergency Plan all events that could occur during any given emergency situation. However, a combination of hazard assessments, an effective Emergency Plan, and Emergency Plan Implementing Procedures (EPIPs) can provide the framework for responses to postulated emergency situations. Revision 7, 2004 of the above mentioned LLNL Emergency Plan is available to the public. The most recent revision of the LLNL Emergency Plan LLNL-AM-402556, Revision 11, March 2008, has been included as an appendix to the RMP Supplemental Information document. LLNL Site 200 is a research and development laboratory with infrastructure necessary to support its operations and personnel. Research and development activities at LLNL are focused on stockpile stewardship; achieving robust and vital scientific, engineering, and manufacturing capability; inertial confinement fusion; laser technology; materials and process science; computational and information sciences; basic sciences; engineering sciences; and biological sciences. Based upon CalARP Program regulations, guidance found in California Accidental Release Prevention Program (CalARP) Administering Guidance, Chapter 1, a review of facility specific documents, accident analyses summarized in this document & detailed in the LLNL Site 200 RMP Supporting Information document, LLNL has determined that each process meeting the CalARP threshold criteria meets the requirements for CalARP Program Level 1. In accordance with CalARP regulations, LLNL considers the natural segmentation of processes at Site 200 to be on a building basis and therefore consideration of inventory should be on a building basis rather than a 'site-wide' basis. Only those materials identified as equal to as or greater than the threshold quantities for the CalARP program on a building (process) level are reflected in this document. As such, materials and quantities reported in this document on a building (process) level will vary from materials and quantities reported in the LLNL Hazardous Materials Business Plan, Acutely Hazardous Material Registration Form on a site-wide level. For each process involving regulated quantities of lithium hydride, worst case accident analysis shows that the toxic endpoint lies within the site boundaries. These analyses document that the nearest public receptor is beyond the distance to a toxic or flammable endpoint. Refer to the LLNL Site 200 RMP Supporting Information document for a more detailed explanation of the worst case accident analyses for these processes. For the process involving regulated quantities of nitric acid, worst case accident analysis predicts a hazard zone well within areas under the jurisdiction of the Department of Energy. This analysis documents that the nearest public receptor is beyond the distance to a toxic or flammable endpoint. Refer to the LLNL Site 200 RMP Supporting Information document for a more detailed explanation of the worst case accident analysis for this process. LLNL maintains an active program to protect workers, the public, and the environment from harm resulting from its activities. Its policies and technical directions for controlling all hazards that are present as a result of its operations are described in the LLNL Environment, Health, and Safety Manual (referenced above).},
doi = {10.2172/945753},
url = {https://www.osti.gov/biblio/945753}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Jul 30 00:00:00 EDT 2008},
month = {Wed Jul 30 00:00:00 EDT 2008}
}