skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps

Abstract

Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone’s back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions,more » improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: a) improve the knowledge of degradation mechanisms in times shorter than service life; b) improve modeling of barrier degradation dynamics; c) develop sensor systems to identify early degradation; and d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.« less

Authors:
; ;
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
944220
Report Number(s):
INEEL/CON-02-01409
DOE Contract Number:  
DE-AC07-99ID-13727
Resource Type:
Conference
Resource Relation:
Conference: Waste Management 2003,Tucson, AZ,02/23/2003,02/27/2003
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS; surface caps

Citation Formats

Piet, Steven James, Breckenridge, Robert Paul, and Burns, Douglas Edward. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps. United States: N. p., 2003. Web.
Piet, Steven James, Breckenridge, Robert Paul, & Burns, Douglas Edward. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps. United States.
Piet, Steven James, Breckenridge, Robert Paul, and Burns, Douglas Edward. 2003. "Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps". United States. https://www.osti.gov/servlets/purl/944220.
@article{osti_944220,
title = {Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps},
author = {Piet, Steven James and Breckenridge, Robert Paul and Burns, Douglas Edward},
abstractNote = {Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone’s back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: a) improve the knowledge of degradation mechanisms in times shorter than service life; b) improve modeling of barrier degradation dynamics; c) develop sensor systems to identify early degradation; and d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.},
doi = {},
url = {https://www.osti.gov/biblio/944220}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Feb 01 00:00:00 EST 2003},
month = {Sat Feb 01 00:00:00 EST 2003}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: