skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-destructive Identification of Individual Leukemia Cells by Optical Trapping Raman Spectroscopy

Abstract

Currently, a combination of technologies is typically required to assess the malignancy of cancer cells. These methods often lack the specificity and sensitivity necessary for early, accurate diagnosis. Here we demonstrate using clinical samples the application of laser trapping Raman spectroscopy as a novel approach that provides intrinsic biochemical markers for the noninvasive detection of individual cancer cells. The Raman spectra of live, hematopoietic cells provide reliable molecular fingerprints that reflect their biochemical composition and biology. Populations of normal T and B lymphocytes from four healthy individuals, and cells from three leukemia patients were analyzed, and multiple intrinsic Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for cancer cell identification. A combination of two multivariate statistical methods, principal component analysis (PCA) and linear discriminant analysis (LDA), was used to confirm the significance of these markers for identifying cancer cells and classifying the data. The results indicate that, on average, 95% of the normal cells and 90% of the patient cells were accurately classified into their respective cell types. We also provide evidence that these markers are unique to cancer cells and not purely a function of differences in their cellular activation.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
940473
Report Number(s):
UCRL-JRNL-229152
TRN: US200824%%36
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Journal Article
Resource Relation:
Journal Name: Analytical Chemistry, vol. 80, no. 6, February 9, 2008, pp. 2180-2187; Journal Volume: 80; Journal Issue: 6
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; 59 BASIC BIOLOGICAL SCIENCES; 42 ENGINEERING; BIOLOGY; DETECTION; DIAGNOSIS; DNA; LASERS; LEUKEMIA; LYMPHOCYTES; NEOPLASMS; PATIENTS; PROTEINS; RAMAN SPECTRA; RAMAN SPECTROSCOPY; SENSITIVITY; SPECIFICITY; TRAPPING

Citation Formats

Chan, J W, Taylor, D S, Lane, S, Zwerdling, T, Tuscano, J, and Huser, T. Non-destructive Identification of Individual Leukemia Cells by Optical Trapping Raman Spectroscopy. United States: N. p., 2007. Web.
Chan, J W, Taylor, D S, Lane, S, Zwerdling, T, Tuscano, J, & Huser, T. Non-destructive Identification of Individual Leukemia Cells by Optical Trapping Raman Spectroscopy. United States.
Chan, J W, Taylor, D S, Lane, S, Zwerdling, T, Tuscano, J, and Huser, T. Mon . "Non-destructive Identification of Individual Leukemia Cells by Optical Trapping Raman Spectroscopy". United States. doi:. https://www.osti.gov/servlets/purl/940473.
@article{osti_940473,
title = {Non-destructive Identification of Individual Leukemia Cells by Optical Trapping Raman Spectroscopy},
author = {Chan, J W and Taylor, D S and Lane, S and Zwerdling, T and Tuscano, J and Huser, T},
abstractNote = {Currently, a combination of technologies is typically required to assess the malignancy of cancer cells. These methods often lack the specificity and sensitivity necessary for early, accurate diagnosis. Here we demonstrate using clinical samples the application of laser trapping Raman spectroscopy as a novel approach that provides intrinsic biochemical markers for the noninvasive detection of individual cancer cells. The Raman spectra of live, hematopoietic cells provide reliable molecular fingerprints that reflect their biochemical composition and biology. Populations of normal T and B lymphocytes from four healthy individuals, and cells from three leukemia patients were analyzed, and multiple intrinsic Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discriminating power for cancer cell identification. A combination of two multivariate statistical methods, principal component analysis (PCA) and linear discriminant analysis (LDA), was used to confirm the significance of these markers for identifying cancer cells and classifying the data. The results indicate that, on average, 95% of the normal cells and 90% of the patient cells were accurately classified into their respective cell types. We also provide evidence that these markers are unique to cancer cells and not purely a function of differences in their cellular activation.},
doi = {},
journal = {Analytical Chemistry, vol. 80, no. 6, February 9, 2008, pp. 2180-2187},
number = 6,
volume = 80,
place = {United States},
year = {Mon Mar 05 00:00:00 EST 2007},
month = {Mon Mar 05 00:00:00 EST 2007}
}
  • Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modesmore » that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.« less
  • Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often non-specific, slow, biologically perturbing, or a combination, thereof. Here, we show that single-cell micro-Raman spectroscopy averts these shortcomings and can be used to discriminate between unfixed normal human lymphocytes and transformed Jurkat and Raji lymphocyte cell lines based on their biomolecular Raman signatures. We demonstrate that single-cell Raman spectra provide a highly reproducible biomolecular fingerprint of each cell type. Characteristic peaks, mostly due to different DNA and protein concentrations, allow for discerning normal lymphocytes from transformed lymphocytes with high confidence (p << 0.05). Spectra aremore » also compared and analyzed by principal component analysis (PCA) to demonstrate that normal and transformed cells form distinct clusters that can be defined using just two principal components. The method is shown to have a sensitivity of 98.3% for cancer detection, with 97.2% of the cells being correctly classified as belonging to the normal or transformed type. These results demonstrate the potential application of confocal micro-Raman spectroscopy as a clinical tool for single cell cancer detection based on intrinsic biomolecular signatures, therefore eliminating the need for exogenous fluorescent labeling.« less
  • Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging toolmore » comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.« less
  • In this study, Raman spectroscopy is used as a tool to determine the light-trapping capability of textured ZnO front electrodes implemented in microcrystalline silicon (μc-Si:H) solar cells. Microcrystalline silicon films deposited on superstrates of various roughnesses are characterized by Raman micro-spectroscopy at excitation wavelengths of 442 nm, 514 nm, 633 nm, and 785 nm, respectively. The way to measure quantitatively and with a high level of reproducibility the Raman intensity is described in details. By varying the superstrate texture and with it the light trapping in the μc-Si:H absorber layer, we find significant differences in the absolute Raman intensity measured in the near infraredmore » wavelength region (where light trapping is relevant). A good agreement between the absolute Raman intensity and the external quantum efficiency of the μc-Si:H solar cells is obtained, demonstrating the validity of the introduced method. Applications to thin-film solar cells, in general, and other optoelectronic devices are discussed.« less
  • Imaging a single biomolecule at atomic resolution without averaging over different conformations is the ultimate goal in structural biology. We report recordings of a protein at nanometer resolution obtained from one individual ferritin by means of low-energy electron holography. One single protein could be imaged for an extended period of time without any sign of radiation damage. Since the fragile protein shell encloses a robust iron cluster, the holographic reconstructions could also be cross-validated against transmission electron microscopy images of the very same molecule by imaging its iron core.