skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanisms of Low Dose Radiation-induced T helper Cell Function

Abstract

Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of “dirty bombs” by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secretemore » potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to photons. Over the course of this research, tissues other than spleens were archived and with funding obtained from other sources, including the Department of Radiation Medicine at the Loma Linda University Medical Center, some additional assays were performed. Furthermore, groups of additional mice were included that were pre-exposed to low-dose photons before irradiating with acute photons, protons, and simulated solar particle event (SPE) protons. Hence, the original support together with the additional funding for our research led to generation of much valuable information that was originally not anticipated. Some of the data has already resulted in published articles, manuscripts in review, and a number of presentations at scientific conferences and workshops. Difficulties in reliable and reproducible quantification of secreted cytokines using multi-plex technology delayed completion of this study for a period of time. However, final analyses of the remaining data are currently being performed and should result in additional publications and presentations in the near future. Some of the most notable conclusions, thus far, are briefly summarized below: - Distribution of leukocytes were dependent upon cell type, radiation quality, body compartment analyzed, and time after exposure. Low-dose protons tended to have less effect on numbers of major leukocyte populations and T cell subsets compared to low-dose photons. - The patterns of gene and cytokine expression in CD4+ T cells after protracted low-dose irradiation were significantly modified and highly dependent upon the total dose and time after exposure. - Patterns of gene and cytokine expression differed substantially among groups exposed to low-dose photons versus low-dose protons; differences were also noted among groups exposed to much higher doses of photons, protons, and simulated SPE protons. - Some measurements indicated that exposure to low-dose photon radiation, especially 0.01 Gy, significantly “normalized” at least some adverse effects of simulated SPE protons, thereby suggesting that this low level of radiation may induce protective mechanisms against a relatively large radiation event. - Analysis of signal transduction pathways in CD4+ T cells showed that whole-body priming with 0.01 Gy photons before exposure to simulated SPE protons significantly increased expression of p38MAPK and NF-kappaB, while JNK expression was decreased. Overall, it appears that the p38MAPK signaling pathway may be most important in inducing a radioprotective response.« less

Authors:
Publication Date:
Research Org.:
Loma Linda University, Loma Linda, CA
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
940241
Report Number(s):
Gridley 001
0011740; ER64098; TRN: US1001445
DOE Contract Number:  
FG02-05ER64098
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; 43 PARTICLE ACCELERATORS; ACCELERATORS; ELECTRONS; FUNCTIONALS; GENES; HEALING; IRRADIATION; LEUKOCYTES; LYMPHOCYTES; LYMPHOKINES; MEDICAL ESTABLISHMENTS; MEDICINE; MICE; NEOPLASMS; NUCLEAR MEDICINE; NUCLEAR POWER PLANTS; OCCUPATIONS; PATIENTS; PHOTONS; PROTEINS; PROTONS; RADIATION QUALITY; RADIATIONS; RADIOTHERAPY; SOLAR PARTICLES; SOLAR PROTONS; WASTES; low-dose radiation; low-linear energy transfer (LET) radiation, photons; protons; T helper cells; immune system; gene expression; cytokines; signal transduction; solar particle event

Citation Formats

Gridley, Daila S. Mechanisms of Low Dose Radiation-induced T helper Cell Function. United States: N. p., 2008. Web. doi:10.2172/940241.
Gridley, Daila S. Mechanisms of Low Dose Radiation-induced T helper Cell Function. United States. doi:10.2172/940241.
Gridley, Daila S. Fri . "Mechanisms of Low Dose Radiation-induced T helper Cell Function". United States. doi:10.2172/940241. https://www.osti.gov/servlets/purl/940241.
@article{osti_940241,
title = {Mechanisms of Low Dose Radiation-induced T helper Cell Function},
author = {Gridley, Daila S.},
abstractNote = {Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of “dirty bombs” by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to photons. Over the course of this research, tissues other than spleens were archived and with funding obtained from other sources, including the Department of Radiation Medicine at the Loma Linda University Medical Center, some additional assays were performed. Furthermore, groups of additional mice were included that were pre-exposed to low-dose photons before irradiating with acute photons, protons, and simulated solar particle event (SPE) protons. Hence, the original support together with the additional funding for our research led to generation of much valuable information that was originally not anticipated. Some of the data has already resulted in published articles, manuscripts in review, and a number of presentations at scientific conferences and workshops. Difficulties in reliable and reproducible quantification of secreted cytokines using multi-plex technology delayed completion of this study for a period of time. However, final analyses of the remaining data are currently being performed and should result in additional publications and presentations in the near future. Some of the most notable conclusions, thus far, are briefly summarized below: - Distribution of leukocytes were dependent upon cell type, radiation quality, body compartment analyzed, and time after exposure. Low-dose protons tended to have less effect on numbers of major leukocyte populations and T cell subsets compared to low-dose photons. - The patterns of gene and cytokine expression in CD4+ T cells after protracted low-dose irradiation were significantly modified and highly dependent upon the total dose and time after exposure. - Patterns of gene and cytokine expression differed substantially among groups exposed to low-dose photons versus low-dose protons; differences were also noted among groups exposed to much higher doses of photons, protons, and simulated SPE protons. - Some measurements indicated that exposure to low-dose photon radiation, especially 0.01 Gy, significantly “normalized” at least some adverse effects of simulated SPE protons, thereby suggesting that this low level of radiation may induce protective mechanisms against a relatively large radiation event. - Analysis of signal transduction pathways in CD4+ T cells showed that whole-body priming with 0.01 Gy photons before exposure to simulated SPE protons significantly increased expression of p38MAPK and NF-kappaB, while JNK expression was decreased. Overall, it appears that the p38MAPK signaling pathway may be most important in inducing a radioprotective response.},
doi = {10.2172/940241},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2008},
month = {10}
}