skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improving Dispersion of Single-Walled Carbon Nanotubes in a Polymer Matrix Using Specific Interactions

Abstract

A novel approach is presented to improve the dispersion of oxidized single-walled carbon nanotubes (SWNTs) in a copolymer matrix by tuning hydrogen-bonding interactions to enhance dispersion. Nanocomposites of single-walled carbon nanotubes and copolymers of styrene and vinyl phenol (PSVPh) with varying vinyl phenol content were produced and examined. The dispersion of the SWNT in the polymer matrix is quantified by optical microscopy and Raman spectroscopy. Raman spectroscopy is also used to investigate preferred interactions between the SWNTs and the copolymers via the shift in the D* Raman band of the SWNTs in the composites. All composites show regions of SWNT aggregates; however, the aggregate size varies with composition of the PSVPh copolymer and the amount of SWNT oxidation. Optimal dispersion of the SWNT is observed in PSVPh with 20% vinyl phenol and oxidized nanotubes, which correlates with spectroscopic evidence that indicates that this system also incorporates the most interactions between SWNT and polymer matrix. These results are in agreement with previous studies that indicate that optimizing the extent of specific interactions between a polymer matrix and nanoscale filler enables the efficient dispersion of the nanofillers.

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
939140
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Chemistry of Materials; Journal Volume: 18; Journal Issue: 15
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; CARBON; NANOTUBES; COPOLYMERS; DISPERSIONS; MATRIX MATERIALS; INTERACTIONS

Citation Formats

Rasheed, Asif, Dadmun, Mark D, Ivanov, Ilia N, Britt, Phillip F, and Geohegan, David B. Improving Dispersion of Single-Walled Carbon Nanotubes in a Polymer Matrix Using Specific Interactions. United States: N. p., 2006. Web. doi:10.1021/cm060315z.
Rasheed, Asif, Dadmun, Mark D, Ivanov, Ilia N, Britt, Phillip F, & Geohegan, David B. Improving Dispersion of Single-Walled Carbon Nanotubes in a Polymer Matrix Using Specific Interactions. United States. doi:10.1021/cm060315z.
Rasheed, Asif, Dadmun, Mark D, Ivanov, Ilia N, Britt, Phillip F, and Geohegan, David B. Sun . "Improving Dispersion of Single-Walled Carbon Nanotubes in a Polymer Matrix Using Specific Interactions". United States. doi:10.1021/cm060315z.
@article{osti_939140,
title = {Improving Dispersion of Single-Walled Carbon Nanotubes in a Polymer Matrix Using Specific Interactions},
author = {Rasheed, Asif and Dadmun, Mark D and Ivanov, Ilia N and Britt, Phillip F and Geohegan, David B},
abstractNote = {A novel approach is presented to improve the dispersion of oxidized single-walled carbon nanotubes (SWNTs) in a copolymer matrix by tuning hydrogen-bonding interactions to enhance dispersion. Nanocomposites of single-walled carbon nanotubes and copolymers of styrene and vinyl phenol (PSVPh) with varying vinyl phenol content were produced and examined. The dispersion of the SWNT in the polymer matrix is quantified by optical microscopy and Raman spectroscopy. Raman spectroscopy is also used to investigate preferred interactions between the SWNTs and the copolymers via the shift in the D* Raman band of the SWNTs in the composites. All composites show regions of SWNT aggregates; however, the aggregate size varies with composition of the PSVPh copolymer and the amount of SWNT oxidation. Optimal dispersion of the SWNT is observed in PSVPh with 20% vinyl phenol and oxidized nanotubes, which correlates with spectroscopic evidence that indicates that this system also incorporates the most interactions between SWNT and polymer matrix. These results are in agreement with previous studies that indicate that optimizing the extent of specific interactions between a polymer matrix and nanoscale filler enables the efficient dispersion of the nanofillers.},
doi = {10.1021/cm060315z},
journal = {Chemistry of Materials},
number = 15,
volume = 18,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • In this study we investigate the formation of non-covalent electron donor acceptor (EDA) interactions between polymers and single-walled carbon nanotubes (SWNTs) with the goal of optimizing interfacial adhesion and homogeneity of nanocomposites without modifying the SWNT native surface. Nanocomposites of SWNTs and three sets of polymer matrices with varying composition of electron donating 2-(dimethylamino)ethyl methacrylate (DMAEMA) or electron accepting acrylonitrile (AN) and cyanostyrene (CNSt) were prepared, quantitatively characterized by optical microscopy and Raman spectroscopy (Raman mapping, Raman D* peak shifts) and qualitatively compared through thick film composite visualization. The experimental data show that copolymers with 30 mol% DMAEMA, 45 mol%more » AN, 23 mol% CNSt and polyacrylonitrile homopolymer have the highest extent of intermolecular interaction, which translates to an optimum SWNT spatial dispersion among the series. These results are found to correlate very well with the intermolecular interaction energies obtained from quantum density functional theory calculations. Both experimental and computational results also illustrate that chain connectivity is critical in controlling the accessibility of the functional groups to form intermolecular interactions. This means that an adequate distance between interacting functional groups on a polymer chain is needed in order to allow efficient intermolecular contact. Thus, controlling the amount of electron donating or withdrawing moieties throughout the polymer chain will direct the extent of EDA interaction, which enables tuning the SWNT dispersion.« less
  • In this study we investigate the formation of non-covalent electron donor acceptor (EDA) interactions between polymers and single-walled carbon nanotubes (SWNTs) with the goal of optimizing interfacial adhesion and homogeneity of nanocomposites without modifying the SWNT native surface. Nanocomposites of SWNTs and three sets of polymer matrices with varying composition of electron donating 2-(dimethylamino)ethyl methacrylate (DMAEMA) or electron accepting acrylonitrile (AN) and cyanostyrene (CNSt) were prepared, quantitatively characterized by optical microscopy and Raman spectroscopy (Raman mapping, Raman D* peak shifts) and qualitatively compared through thick film composite visualization. The experimental data show that copolymers with 30 mol% DMAEMA, 45 mol%more » AN, 23 mol% CNSt and polyacrylonitrile homopolymer have the highest extent of intermolecular interaction, which translates to an optimum SWNT spatial dispersion among the series. These results are found to correlate very well with the intermolecular interaction energies obtained from quantum density functional theory calculations. Both experimental and computational results also illustrate that chain connectivity is critical in controlling the accessibility of the functional groups to form intermolecular interactions. This means that an adequate distance between interacting functional groups on a polymer chain is needed in order to allow efficient intermolecular contact. Thus, controlling the amount of electron donating or withdrawing moieties throughout the polymer chain will direct the extent of EDA interaction, which enables tuning the SWNT dispersion.« less
  • Graphical abstract: Ionic liquid ([C6-mim]PF6) used as dispersant agent for SWCNTs: An investigations were carried out to find the structural quality and surface modification for sensor application. - Highlights: • An effective technique based on Ionic liquids (IL) and their use as a dispersant. • Electron microscopy and spectroscopy for structure characterization. • Covalent linkage of ILs with SWNTs and dispersion of SWCNTs. • The IL-wrapped sensing film, capable for detecting trace levels of gas. - Abstract: Single-walled carbon nanotubes (SWCNTs) were dispersed in an imidazolium-based ionic liquid (IL) and investigated in terms of structural quality, surface functionalization and inter-CNTmore » force. Analysis by field emission electron microscopy and transmission electron microscopy shows the IL layer to coat the SWNTs, and FTIR and Raman spectroscopy confirm strong binding of the ILs to the SWNTs. Two kinds of resistive sensors were fabricated, one by drop casting of IL-wrapped SWCNTs, the other by conventional dispersion of SWCNTs. Good response and recovery to NO{sub 2} is achieved with the IL-wrapped SWCNTs material upon UV-light exposure, which is needed because decrease the desorption energy barrier to increase the gas molecule desorption. NO{sub 2} can be detected in the 1–20 ppm concentration range. The sensor is not interfered by humidity due to the hydrophobic tail of PF6 (ionic liquid) that makes our sensor highly resistant to moisture.« less
  • Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.
  • The dispersion of single-walled carbon nanotubes (SWNT) in poly({var_epsilon}-caprolactone) with the aid of a zwitterionic surfactant is reported. Melt rheology and electrical conductivity measurements indicate geometrical percolation and electrical percolation for nanocomposites with {approx}0.08 wt % SWNT, implying an effective anisotropy for the nanotubes of at least 600. Spectroscopic measurements and comparison of dispersion using other surfactants established that the excellent dispersion is a result of the compatibilizing effect of the zwitterionic surfactant.