skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Two Dimensional Simulations of Plastic-Shell, Direct-Drive Implosions on OMEGA

Journal Article · · Physics of Plasmas
OSTI ID:936449

Multidimensional hydrodynamic properties of high-adiabat direct-drive plastic-shell implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] are investigated using the multidimensional hydrodynamic code, DRACO. Multimode simulations including the effects of nonuniform illumination and target roughness indicate that shell stability during the acceleration phase plays a critical role in determining target performance. For thick shells that remain integral during the acceleration phase, target yields are significantly reduced by the combination of the long-wavelength ({ell} < 10) modes due to surface roughness and beam imbalance and the intermediate modes (20 {le} {ell} {le} 50) due to single-beam nonuniformities. The neutron-production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The yield degradation in the thin shells is mainly due to shell breakup at short wavelengths ({lambda} {approx} {Delta}, where {Delta} is the in-flight shell thickness). The neutron-rate curves for the thinner shells have significantly lower amplitudes and a fall-off that is less steep than 1-D rates. DRACO simulation results are consistent with experimental observations.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
936449
Report Number(s):
UCRL-JRNL-206954; PHPAEN; TRN: US0805517
Journal Information:
Physics of Plasmas, Vol. 12; ISSN 1070-664X
Country of Publication:
United States
Language:
English