skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamical Feedback of Self-generated Magnetic Fields in Cosmic Rays Modified Shocks

Journal Article ·
OSTI ID:936349

We present a semi-analytical kinetic calculation of the process of non-linear diffusive shock acceleration (NLDSA) which includes magnetic field amplification due to cosmic ray induced streaming instability, the dynamical reaction of the amplified magnetic field and the possible effects of turbulent heating. This kinetic calculation allows us to show that the net effect of the amplified magnetic field is to enhance the maximum momentum of accelerated particles while reducing the concavity of the spectra, with respect to the standard predictions of NLDSA. This is mainly due to the dynamical reaction of the amplified field on the shock, which smoothens the shock precursor. The total compression factors which are obtained for parameters typical of supernova remnants are R{sub tot} {approx} 7-10, in good agreement with the values inferred from observations. The strength of the magnetic field produced through excitation of streaming instability is found in good agreement with the values inferred for several remnants if the thickness of the X-ray rims are interpreted as due to severe synchrotron losses of high energy electrons. We also discuss the relative role of turbulent heating and magnetic dynamical reaction in smoothening the shock precursor.

Research Organization:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-07CH11359
OSTI ID:
936349
Report Number(s):
FERMILAB-PUB-08-256-A; arXiv eprint number arXiv:0807.4261; TRN: US0805592
Country of Publication:
United States
Language:
English