skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microanalytical characterization of multi-rare earth nanocrystalline magnets by TEM and APT

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.2172215· OSTI ID:936009

The partitioning behavior of various rare-earth (RE) elements during solidification and their segregation behavior at the grain boundaries were investigated in nanocrystalline (Y{sub 0.5}Dy{sub 0.5}{sub 2.2}Fe{sub 14}B and (Nd{sub 0.5}Y{sub 0.25}Dy{sub 0.25}){sub 1.8}Zr{sub 0.4}Co{sub 1.5}Fe{sub 12.5}B alloys by transmission electron microscopy and atom probe tomography. The best hard magnetic properties obtained are H{sub cj} = 22 kOe, B{sub r}=5.10 kG, and (BH){sub max} = 5.97 MG Oe for the Y-Dy-based alloy and H{sub cj}=10.6 kOe, B{sub r}=6.64 kG, and (BH){sub max}=9.56 MG Oe for the Y-Nd-Dy based alloy. The grain size of the Y-Dy based alloy was {approx} 50 nm. The Y-Nd-Dy based alloy had an overall finer, bimodal grain size. An intergranular (Y{sub 0.36}Dy{sub 0.64}){sub 6}Fe{sub 23} phase was detected in the Y-Dy based alloy. A uniform distribution of RE elements was found within the 2-14-1 grains in both alloys. The Y:(Dy+Nd) ratio in the Y-Nd-Dy alloy was lower than its nominal composition, indicating that the Y is segregating to grain boundaries or forming a second phase.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Shared Research Equipment Collaborative Research Center
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
936009
Journal Information:
Journal of Applied Physics, Vol. 99, Issue 8; ISSN 0021-8979
Country of Publication:
United States
Language:
English