skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A VISION of Advanced Nuclear System Cost Uncertainty

Conference ·
OSTI ID:933191

VISION (VerifIable fuel cycle SImulatiON) is the Advanced Fuel Cycle Initiative’s and Global Nuclear Energy Partnership Program’s nuclear fuel cycle systems code designed to simulate the US commercial reactor fleet. The code is a dynamic stock and flow model that tracks the mass of materials at the isotopic level through the entire nuclear fuel cycle. As VISION is run, it calculates the decay of 70 isotopes including uranium, plutonium, minor actinides, and fission products. VISION.ECON is a sub-model of VISION that was developed to estimate fuel cycle and reactor costs. The sub-model uses the mass flows generated by VISION for each of the fuel cycle functions (referred to as modules) and calculates the annual cost based on cost distributions provided by the Advanced Fuel Cycle Cost Basis Report1. Costs are aggregated for each fuel cycle module, and the modules are aggregated into front end, back end, recycling, reactor, and total fuel cycle costs. The software also has the capability to perform system sensitivity analysis. This capability may be used to analyze the impacts on costs due to system uncertainty effects. This paper will provide a preliminary evaluation of the cost uncertainty affects attributable to 1) key reactor and fuel cycle system parameters and 2) scheduling variations. The evaluation will focus on the uncertainty on the total cost of electricity and fuel cycle costs. First, a single light water reactor (LWR) using mixed oxide fuel is examined to ascertain the effects of simple parameter changes. Three system parameters; burnup, capacity factor and reactor power are varied from nominal cost values and the affect on the total cost of electricity is measured. These simple parameter changes are measured in more complex scenarios 2-tier systems including LWRs with mixed fuel and fast recycling reactors using transuranic fuel. Other system parameters are evaluated and results will be presented in the paper. Secondly, the uncertainty due to variation in scheduling effects is evaluated. For example, economic impacts due to increased nuclear energy growth rates and speed-ups in deployment of fuel cycle facilities and fast reactors. Preliminary results show that significant variations in the costs of the scenarios can result from variations in burnup, capacity factor and reactor power. The paper will include new results from analysis of additional system variables and due to scheduling dynamics. Reference 1. Shropshire, D.E. et al, 2007, Advanced Fuel Cycle Cost Basis, INL/EXT-07-12107, April 2007.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
DOE - NE
DOE Contract Number:
DE-AC07-99ID-13727
OSTI ID:
933191
Report Number(s):
INL/CON-07-13312; TRN: US0803763
Resource Relation:
Conference: ICONE 16,Orlando, Florida,05/11/2008,05/15/2008
Country of Publication:
United States
Language:
English