skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Carbon Based optically Transparent Electrodes from Pyrolyzed Photoresist for the Investigation of Phenomena at Electrified Carbon-Solution Interfaces

Abstract

The work presented herein describes a fundamental investigations of carbon as electrode material by using the pyrolysis of photoresist to create an optically transparent material. The development of these carbon-based optically transparent electrodes (C-OTEs) enables investigations of molecular interactions within the electrical double layer, processes that are central to a wide range of important phenomena, including the impact of changes in the surface charge density on adsorption. The electrochemical importance of carbon cannot be understated, having relevance to separations and detection by providing a wide potential window and low background current in addition to being low cost and light weight. The interactions that govern the processes at the carbon electrode surface has been studied extensively. A variety of publications from the laboratories of McCreery and Kinoshita provide in depth summaries about carbon and its many applications in electrochemistry. These studies reveal that defects, impurities, oxidation, and a variety of functional groups create adsorption sites on carbon surfaces with different characteristics. The interest in C-OTEs was sparked by the desire to study and understand the behavior of individual molecules at electrified interfaces. It draws on the earlier development of Electrochemically Modulated Liquid Chromatography (EMLC), which uses carbon as the stationary phase.more » EMLC takes advantage of changing the applied potential to the carbon electrode to influence the retention behavior of analytes. However, perspectives gained from, for example, chromatographic measurements reflect the integrated response of a large ensemble of potentially diverse interactions between the adsorbates and the carbon electrode. Considering the chemically and physically heterogeneous surface of electrode materials such as glassy carbon, the integrated response provides little insight into the interactions at a single molecule level. To investigate individual processes, they have developed C-OTEs in order to couple electrochemistry with single molecule spectroscopy (SMS). Like EMLC, the novel merger of SMS with electrochemistry is a prime example of how a hybrid method can open new and intriguing avenues that are of both fundamental and technological importance. They show that by taking the benefits of total internal reflection fluorescence microscopy (TIRFM) and incorporating carbon as electrode material observations central to the interactions between single DNA molecules and an electrified carbon surface can be delineated. Using TIRFM while applying a positive potential to the electrode, individual molecules can be observed as they reversibly and irreversibly adsorb to the carbon surface. The positive potential attracts the negatively charged DNA molecules to the electrode surface. Dye labels on the DNA within the evanescent wave are excited and their fluorescence is captured by an intensified charge coupled device (ICCD) camera. Results are therefore presented regarding the interactions of λ-DNA, 48,502 base pairs (48.5 kbp), HPV-16, 7.9 kbp, and 1 kbp fraction of pBR322 DNA. In addition to the influence of molecular size on adsorption, the fabrication, characterization, and more conventional spectroelectrochemical applications of these novel C-OTEs are presented.« less

Authors:
 [1]
  1. Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
AgSolver, Inc., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
933140
Report Number(s):
IS-T 2237
TRN: US200814%%297
DOE Contract Number:
AC02-07CH11358; W-74050-Eng-82
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; ADSORPTION; CARBON; CHARGE DENSITY; CHROMATOGRAPHY; DEFECTS; DETECTION; DNA; DYES; ELECTROCHEMISTRY; ELECTRODES; FABRICATION; FLUORESCENCE; FUNCTIONALS; IMPURITIES; MICROSCOPY; OXIDATION; PYROLYSIS; REFLECTION; RETENTION; SPECTROSCOPY

Citation Formats

Donner, Sebastian. Development of Carbon Based optically Transparent Electrodes from Pyrolyzed Photoresist for the Investigation of Phenomena at Electrified Carbon-Solution Interfaces. United States: N. p., 2007. Web. doi:10.2172/933140.
Donner, Sebastian. Development of Carbon Based optically Transparent Electrodes from Pyrolyzed Photoresist for the Investigation of Phenomena at Electrified Carbon-Solution Interfaces. United States. doi:10.2172/933140.
Donner, Sebastian. Mon . "Development of Carbon Based optically Transparent Electrodes from Pyrolyzed Photoresist for the Investigation of Phenomena at Electrified Carbon-Solution Interfaces". United States. doi:10.2172/933140. https://www.osti.gov/servlets/purl/933140.
@article{osti_933140,
title = {Development of Carbon Based optically Transparent Electrodes from Pyrolyzed Photoresist for the Investigation of Phenomena at Electrified Carbon-Solution Interfaces},
author = {Donner, Sebastian},
abstractNote = {The work presented herein describes a fundamental investigations of carbon as electrode material by using the pyrolysis of photoresist to create an optically transparent material. The development of these carbon-based optically transparent electrodes (C-OTEs) enables investigations of molecular interactions within the electrical double layer, processes that are central to a wide range of important phenomena, including the impact of changes in the surface charge density on adsorption. The electrochemical importance of carbon cannot be understated, having relevance to separations and detection by providing a wide potential window and low background current in addition to being low cost and light weight. The interactions that govern the processes at the carbon electrode surface has been studied extensively. A variety of publications from the laboratories of McCreery and Kinoshita provide in depth summaries about carbon and its many applications in electrochemistry. These studies reveal that defects, impurities, oxidation, and a variety of functional groups create adsorption sites on carbon surfaces with different characteristics. The interest in C-OTEs was sparked by the desire to study and understand the behavior of individual molecules at electrified interfaces. It draws on the earlier development of Electrochemically Modulated Liquid Chromatography (EMLC), which uses carbon as the stationary phase. EMLC takes advantage of changing the applied potential to the carbon electrode to influence the retention behavior of analytes. However, perspectives gained from, for example, chromatographic measurements reflect the integrated response of a large ensemble of potentially diverse interactions between the adsorbates and the carbon electrode. Considering the chemically and physically heterogeneous surface of electrode materials such as glassy carbon, the integrated response provides little insight into the interactions at a single molecule level. To investigate individual processes, they have developed C-OTEs in order to couple electrochemistry with single molecule spectroscopy (SMS). Like EMLC, the novel merger of SMS with electrochemistry is a prime example of how a hybrid method can open new and intriguing avenues that are of both fundamental and technological importance. They show that by taking the benefits of total internal reflection fluorescence microscopy (TIRFM) and incorporating carbon as electrode material observations central to the interactions between single DNA molecules and an electrified carbon surface can be delineated. Using TIRFM while applying a positive potential to the electrode, individual molecules can be observed as they reversibly and irreversibly adsorb to the carbon surface. The positive potential attracts the negatively charged DNA molecules to the electrode surface. Dye labels on the DNA within the evanescent wave are excited and their fluorescence is captured by an intensified charge coupled device (ICCD) camera. Results are therefore presented regarding the interactions of λ-DNA, 48,502 base pairs (48.5 kbp), HPV-16, 7.9 kbp, and 1 kbp fraction of pBR322 DNA. In addition to the influence of molecular size on adsorption, the fabrication, characterization, and more conventional spectroelectrochemical applications of these novel C-OTEs are presented.},
doi = {10.2172/933140},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share: