skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanisms Associated with Rumpling of Pt-Modified Beta-NiAl Coatings

Abstract

The formation of surface undulations (i.e. rumpling) at the bond coat/thermally grown oxide (TGO) interface has been shown to cause failure by spallation of the ceramic top coat in aero-turbine systems. Many mechanisms have been proposed concerning the cause of these surface distortions; however, there is little agreement on what may be the dominating cause of the rumpling behavior. Of there mechanisms, the reversible phase transformation from a cubic β-NiAl structure to a face centered tetragonal (FCT) martensitic phase was of particular interest because of its ability to form surface rumpling in Pt-modified β bulk alloys. However, the bulk alloys used in obtaining that result were simple ternary systems and not relevant to actual coating compositions as other alloying elements enter the coating due to coating/substrate interdiffusion at high temperature. In the current study, the depletion behavior of a commercial coating was studied. Compositions from the depletion path were determined and bulk alloys representing these coating compositions were prepared. The martensitic phase transformation was then characterized using DSC and XRD. The martensitic start temperature on cooling, Ms, was consistently found to be significantly lower than previously reported values (e.g. 530 C vs 100 C). Because of the low Ms temperature,more » the formation of the martensitic phase was concluded to be unnecessary for the occurrence of rumpling. However, cyclic exposure treatments at low temperature (~ 400 C) of bulk alloys and commercial coatings did show the detrimental effects of the phase transformation in the form of crack formation and propagation leading to eventual failure of the alloys. The current work also infers that the differences in coefficient of thermal expansion (CTE) mismatch between the coating and substrate are the dominating factor leading to rumpling. Dilatometry measurements were made on bulk alloys representing depleted coatings and the superalloy substrate to determine CTE as a function of temperature. Finally, simulations were completed to help determine the role of CTE mismatch. It was found that these results compared closely to those collected during experimental cyclic exposure treatments; although, modification to the current model were found to be needed in order to truly simulate rumpling.« less

Authors:
 [1]
  1. Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
933110
Report Number(s):
IS-T 2726
TRN: US200814%%287
DOE Contract Number:
AC02-07CH11358
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALLOYS; CERAMICS; COATINGS; DILATOMETRY; HEAT RESISTING ALLOYS; MODIFICATIONS; OXIDES; PHASE TRANSFORMATIONS; SPALLATION; SUBSTRATES; THERMAL EXPANSION; X-RAY DIFFRACTION

Citation Formats

Henderkott, Joseph Peter. Mechanisms Associated with Rumpling of Pt-Modified Beta-NiAl Coatings. United States: N. p., 2007. Web. doi:10.2172/933110.
Henderkott, Joseph Peter. Mechanisms Associated with Rumpling of Pt-Modified Beta-NiAl Coatings. United States. doi:10.2172/933110.
Henderkott, Joseph Peter. Mon . "Mechanisms Associated with Rumpling of Pt-Modified Beta-NiAl Coatings". United States. doi:10.2172/933110. https://www.osti.gov/servlets/purl/933110.
@article{osti_933110,
title = {Mechanisms Associated with Rumpling of Pt-Modified Beta-NiAl Coatings},
author = {Henderkott, Joseph Peter},
abstractNote = {The formation of surface undulations (i.e. rumpling) at the bond coat/thermally grown oxide (TGO) interface has been shown to cause failure by spallation of the ceramic top coat in aero-turbine systems. Many mechanisms have been proposed concerning the cause of these surface distortions; however, there is little agreement on what may be the dominating cause of the rumpling behavior. Of there mechanisms, the reversible phase transformation from a cubic β-NiAl structure to a face centered tetragonal (FCT) martensitic phase was of particular interest because of its ability to form surface rumpling in Pt-modified β bulk alloys. However, the bulk alloys used in obtaining that result were simple ternary systems and not relevant to actual coating compositions as other alloying elements enter the coating due to coating/substrate interdiffusion at high temperature. In the current study, the depletion behavior of a commercial coating was studied. Compositions from the depletion path were determined and bulk alloys representing these coating compositions were prepared. The martensitic phase transformation was then characterized using DSC and XRD. The martensitic start temperature on cooling, Ms, was consistently found to be significantly lower than previously reported values (e.g. 530 C vs 100 C). Because of the low Ms temperature, the formation of the martensitic phase was concluded to be unnecessary for the occurrence of rumpling. However, cyclic exposure treatments at low temperature (~ 400 C) of bulk alloys and commercial coatings did show the detrimental effects of the phase transformation in the form of crack formation and propagation leading to eventual failure of the alloys. The current work also infers that the differences in coefficient of thermal expansion (CTE) mismatch between the coating and substrate are the dominating factor leading to rumpling. Dilatometry measurements were made on bulk alloys representing depleted coatings and the superalloy substrate to determine CTE as a function of temperature. Finally, simulations were completed to help determine the role of CTE mismatch. It was found that these results compared closely to those collected during experimental cyclic exposure treatments; although, modification to the current model were found to be needed in order to truly simulate rumpling.},
doi = {10.2172/933110},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share:
  • Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedesmore » the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al 2O 3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni 3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O 3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni 3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (~970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free γ'-Ni 3Al increased the extent of external NiO formation due to non-protective HfO 2 formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.« less
  • Surface undulations known as rumpling have been shown to develop at the surface of bond coats used in advanced thermal barrier coating systems. Rumpling can result in cracking and eventual spallation of the top coat. Many mechanisms to explain rumpling have been proposed, and among them is a martensitic transformation. High-temperature x-ray diffraction, differential scanning calorimetry and potentiometry were used to investigate the nature of the martensitic transformation in bulk platinum-modified nickel aluminides. It was found that the martensitic transformation has strong time dependence and can form over a range of temperatures. Cyclic oxidation experiments were performed on the bulkmore » alloys to investigate the effect of the martensitic transformation on surface rumpling. It was found that the occurrence of rumpling was associated with the martensitic transformation. The degree of rumpling was found to increase with an increasing number of cycles and was independent of the heating and cooling rates used. The thickness of the oxide layer at the surface of the samples had a significant impact on the amplitude of the resulting undulations, with amplitude increasing with increasing oxide-layer thickness. Rumpling was also observed in an alloy based on the γ-γ' region of the nickel-aluminum-platinum phase diagram. Rumpling in this alloy was found to occur during isothermal oxidation and is associated with a subsurface layer containing a platinum-rich phase known as a. Rumpling in both alloy systems may be explained by creep deformation of a weakened subsurface layer in response to the compressive stresses in the thermally grown oxide layer.« less
  • The phenomenon of strain aging has been investigated in polycrystalline and single crystal NiAl alloys at temperatures between 300 and 1200 K. Static strain aging studies revealed that after annealing at 1100 K for 7200 s (i.e., 2h) followed by furnace cooling, high purity, nitrogen-doped and titanium-doped polycrystalline alloys exhibited continuous yielding, while conventional-purity and carbon-doped alloys exhibited distinct yield points and Luders strains. Prestraining by hydrostatic pressurization removed the yield points, but they could be reintroduced by further annealing treatments. Yield points could be reintroduced more rapidly if the specimens were prestrained uniaxially rather than hydrostatically, owing to themore » arrangement of dislocations into cell structures during uniaxial deformation. The time dependence of the strain aging events followed a t(exp 2/3) relationship suggesting that the yield points observed in polycrystalline NiAl were the result of the pinning of mobile dislocations by interstitials, specifically carbon. Between 700 and 800 K, yield stress plateaus, yield stress transients upon a ten-fold increase in strain rate, work hardening peaks, and dips in the strain rate sensitivity (SRS) have been observed in conventional-purity and carbon-doped polycrystals. In single crystals, similar behavior was observed; in conventional-purity single crystals, however, the strain rate sensitivity became negative resulting in serrated yielding, whereas, the strain rate sensitivity stayed positive in high purity and in molybdenum-doped NiAl. These observations are indicative of dynamic strain aging (DSA) and are discussed in terms of conventional strain aging theories. The impact of these phenomena on the composition-structure-property relations are discerned.« less
  • Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitativemore » image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings often contain additions of heavier elements, such as zinc, zirconium, and rare earth elements, which significantly improve high temperature performance. However, additions of these elements can lead to macrosegregational effects in castings, which are detectable by radiographic scans. The effect of these flow-line indications on alloy mechanical properties is not well quantified. An examination of these flow-line indications and their effects on mechanical properties in three magnesium-based casting alloys was performed here in order to determine the best practice for dealing with affected castings. Preliminary results suggest the flow-lines do not measurably impact bulk material properties. Three additional methods of characterizing three-dimensional material structures are also presented: a minimum spanning tree analysis is utilized to quantify local structure in Cu-Zr liquid phase simulations obtained from molecular dynamics; the radial distribution function is applied to directionally solidified Al-Si structures in an attempt to extract local spacing data; and the critical diameter measurement is also defined and applied to irregular eutectic Al-Si structures.« less