skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel hexamerization motif is discovered in a conserved cytoplasmic protein from Salmonella typhimurium.

Abstract

The cytoplasmic protein Stm3548 of unknown function obtained from a strain of Salmonella typhimurium was determined by X-ray crystallography at a resolution of 2.25 A. The asymmetric unit contains a hexamer of structurally identical monomers. The monomer is a globular domain with a long beta-hairpin protrusion that distinguishes this structure. This beta-hairpin occupies a central position in the hexamer, and its residues participate in the majority of interactions between subunits of the hexamer. We suggest that the structure of Stm3548 presents a new hexamerization motif. Because the residues participating in interdomain interactions are highly conserved among close members of protein family DUF1355 and buried solvent accessible area for the hexamer is significant, the hexamer is most likely conserved as well. A light scattering experiment confirmed the presence of hexamer in solution.

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Institutes of Health (NIH); OBER Grant
OSTI Identifier:
932453
Report Number(s):
ANL/BIO/JA-61315
TRN: US200813%%57
DOE Contract Number:
DE-AC02-06CH11357
Resource Type:
Journal Article
Resource Relation:
Journal Name: J. Struct. Funct. Genom.; Journal Volume: 8; Journal Issue: 2007
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; CRYSTALLOGRAPHY; LIGHT SCATTERING; MONOMERS; PROTEINS; RESIDUES; RESOLUTION; SALMONELLA TYPHIMURIUM; SOLVENTS; STRAINS

Citation Formats

Petrova, T., Cuff, M., Wu, R., Kim, Y., Holzle, D., Joachimiak, A., Biosciences Division, and Inst. of Mathematical Problems of Biology. Novel hexamerization motif is discovered in a conserved cytoplasmic protein from Salmonella typhimurium.. United States: N. p., 2007. Web. doi:10.1007/s10969-007-9028-1.
Petrova, T., Cuff, M., Wu, R., Kim, Y., Holzle, D., Joachimiak, A., Biosciences Division, & Inst. of Mathematical Problems of Biology. Novel hexamerization motif is discovered in a conserved cytoplasmic protein from Salmonella typhimurium.. United States. doi:10.1007/s10969-007-9028-1.
Petrova, T., Cuff, M., Wu, R., Kim, Y., Holzle, D., Joachimiak, A., Biosciences Division, and Inst. of Mathematical Problems of Biology. Mon . "Novel hexamerization motif is discovered in a conserved cytoplasmic protein from Salmonella typhimurium.". United States. doi:10.1007/s10969-007-9028-1.
@article{osti_932453,
title = {Novel hexamerization motif is discovered in a conserved cytoplasmic protein from Salmonella typhimurium.},
author = {Petrova, T. and Cuff, M. and Wu, R. and Kim, Y. and Holzle, D. and Joachimiak, A. and Biosciences Division and Inst. of Mathematical Problems of Biology},
abstractNote = {The cytoplasmic protein Stm3548 of unknown function obtained from a strain of Salmonella typhimurium was determined by X-ray crystallography at a resolution of 2.25 A. The asymmetric unit contains a hexamer of structurally identical monomers. The monomer is a globular domain with a long beta-hairpin protrusion that distinguishes this structure. This beta-hairpin occupies a central position in the hexamer, and its residues participate in the majority of interactions between subunits of the hexamer. We suggest that the structure of Stm3548 presents a new hexamerization motif. Because the residues participating in interdomain interactions are highly conserved among close members of protein family DUF1355 and buried solvent accessible area for the hexamer is significant, the hexamer is most likely conserved as well. A light scattering experiment confirmed the presence of hexamer in solution.},
doi = {10.1007/s10969-007-9028-1},
journal = {J. Struct. Funct. Genom.},
number = 2007,
volume = 8,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • The structure of the 142-residue protein Q8ZP25 SALTY encoded in the genome of Salmonella typhimurium LT2 was determined independently by NMR and X-ray crystallography, and the structure of the 140-residue protein HYAE ECOLI encoded in the genome of Escherichia coli was determined by NMR. The two proteins belong to Pfam (Finn et al. 34:D247-D251, 2006) PF07449, which currently comprises 50 members, and belongs itself to the 'thioredoxin-like clan'. However, protein HYAE ECOLI and the other proteins of Pfam PF07449 do not contain the canonical Cys-X-X-Cys active site sequence motif of thioredoxin. Protein HYAE ECOLI was previously classified as a (NiFe)more » hydrogenase-1 specific chaperone interacting with the twin-arginine translocation (Tat) signal peptide. The structures presented here exhibit the expected thioredoxin-like fold and support the view that members of Pfam family PF07449 specifically interact with Tat signal peptides.« less
  • ABSTRACT: To evade host resistance mechanisms, Salmonella enterica serovar Typhimurium (STM), a facultative intracellular pathogen, must alter its proteome following macrophage infection. To identify new colonization and virulence factors that mediate STM pathogenesis, we have isolated STM cells from RAW 264.7 macrophages at various time-points following infection and used a liquid chromatography-mass spectrometry (LC-MS)-based proteomic approach to detect the changes in STM protein abundances. Because host resistance to STM infection is strongly modulated by the expression of a functional host resistant regulator, i.e., natural resistance associated macrophage protein 1 (Nramp1, also called Slc11a1), we have also examined the effects ofmore » Nramp1 activity on the changes of STM protein abundances. A total of 315 STM proteins have been identified from isolated STM cells, which are largely house-keeping proteins whose abundances remain relatively constant during the time-course of infection. However, 39 STM proteins are strongly induced after infection, suggesting their involvement in modulating colonization and infection. Of the 39 induced proteins, 6 proteins are specifically modulated by Nramp1 activity, including STM3117, as well as STM3118-3119 whose time-dependent abundance changes were confirmed using Western blot analysis. Deletion of the gene encoding STM3117 resulted in a dramatic reduction in the ability of STM to colonize wild-type RAW 264.7 macrophages, demonstrating a critical involvement of STM3117 in promoting the replication of STM inside macrophages. The predicted function common for STM3117-3119 is biosynthesis and modification of the peptidoglycan layer of STM cell wall, emphasizing their important roles in the colonization of macrophages by Salmonella.« less
  • The intracellular pathogen Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis in the world. This pathogen has two type-III secretion systems (TTSS) necessary for virulence that are encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) and are expressed during extracellular or intracellular infectious states, respectively, to deliver virulence factors (effectors) to the host cell cytoplasm. While many have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this mass spectrometry-based proteomics study, we identified effector proteins secreted under minimal acidic medium growth conditions that induced themore » SPI-2 TTSS and its effectors, and compared the secretome from the parent strain to the secretome from strains missing either essential (SsaK) or regulatory components (SsaL) of the SPI-2 secretion apparatus. We identified 75% of the known TTSS effector repertoire. Excluding translocon components, 95% of the known effectors were biased for identification in the ssaL mutant background, which demonstrated that SsaL regulates SPI-2 type III secretion. To confirm secretion to animal cells, we made translational fusions of several of the best candidates to the calmodulin-dependent adenylate cyclase of Bordetella pertussis and assayed cAMP levels of infected J774 macrophage-like cells. From these infected cells we identified six new TTSS effectors and two others that are secreted independent of TTSS. Our results substantiate reports of additional secretion systems encoded by Salmonella other than TTSS.« less
  • No abstract prepared.
  • Phage viruses that infect prokaryotes integrate their genome into the host chromosome; thus, microbial genomes typically contain genetic remnants of both recent and ancient phage infections. Often phage genes occur in clusters of atypical G+C content that reflect integration of the foreign DNA. However, some phage genes occur in isolation without other phage gene neighbors, probably resulting from horizontal gene transfer. In these cases, the phage gene product is unlikely to function as a component of a mature phage particle, and instead may have been co-opted by the host for its own benefit. The product of one such gene frommore » Salmonella enterica serovar Typhimurium, STM3605, encodes a protein with modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close homologs in other bacteria share this characteristic. The structure of the STM3605 protein was characterized by X-ray crystallography, and functional assays showed that it is a stable, folded protein whose structure closely resembles lysozyme. However, this protein is unlikely to hydrolyze peptidoglycan. Instead, STM3605 is presumed to have evolved an alternative function because it shows some lytic activity and partitions to micelles.« less