skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Urainium Deposition in a Weathered Fractured Saprolite/Shale

Abstract

Chemical analysis and scanning electron microscopy (SEM) microanalysis were carried out on cores of contaminated geological material collected around four closed waste disposal ponds to examine the extent of nitric acid extractable U (U{sub NA}) association with P, S, and extractable Fe, Al, and Mn oxides within deeply weathered fractured shale. The solid phase in many regimes on the site has been exposed to highly buffered acidic (<3.5) groundwater and has been aggressively weathered. Higher correlations occur between U{sub NA} and total P and S (r{sup 2} = 0.76, 0.69, respectively), citrate bicarbonate dithionite extractable Fe (Fed) and Al (Ald) (r{sup 2}=0.87, 0.80, respectively), and acid oxalate extractable or amorphous/poorly crystalline Fe (Feo) (r{sup 2}=0.63) in core material from a field plot known as Area 1 compared to core material from another field plot known as Area 3. In Area 3 core material, linear regression analysis of UNA and total P and S, and Fed, Ald and Feo gave r{sup 2} values of 0.67, 0.4, 0.06, 0.24, and 0.45, respectively. These results showed similar relationships with SEM-wavelength dispersive spectroscopy (WDS) mapping of this material. It is noteworthy that Area 1 geological material has not been as aggressively weathered as Areamore » 3 material due to its physical location from the waste source. In all of the cores, most of the Fe and Al oxides were crystalline, while most of the Mn oxides were amorphous. The greater adsorption and/or fixation of anion complexes of P-U (uranium phosphate) and S onto Fe and Al oxides from Area 1 cores compared to Area 3 core material is probably due to a higher amount of crystalline Fe and Al oxides compared to amorphous Fe and Al oxides and higher Al substitution in Fe oxides in Area 1. This unique study illustrates the relationships between U{sub NA}, total P and S, and Al, Fe and Mn oxides in fractured shale under field conditions which can be used in planning remediation of this site and other similar sites.« less

Authors:
 [1];  [2];  [3]
  1. Queen's University, Belfast
  2. ORNL
  3. Chonnam National University, Gwangju
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
932100
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Science & Technology; Journal Volume: XX; Journal Issue: xx, xxxx
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; URANIUM; ADSORPTION; REGRESSION ANALYSIS; SHALES; SORPTIVE PROPERTIES; SETTLING PONDS; FRACTURED RESERVOIRS; GROUND WATER; PH VALUE

Citation Formats

Phillips, Debra H., Watson, David B, and Roh, Yul. Urainium Deposition in a Weathered Fractured Saprolite/Shale. United States: N. p., 2007. Web.
Phillips, Debra H., Watson, David B, & Roh, Yul. Urainium Deposition in a Weathered Fractured Saprolite/Shale. United States.
Phillips, Debra H., Watson, David B, and Roh, Yul. Mon . "Urainium Deposition in a Weathered Fractured Saprolite/Shale". United States. doi:.
@article{osti_932100,
title = {Urainium Deposition in a Weathered Fractured Saprolite/Shale},
author = {Phillips, Debra H. and Watson, David B and Roh, Yul},
abstractNote = {Chemical analysis and scanning electron microscopy (SEM) microanalysis were carried out on cores of contaminated geological material collected around four closed waste disposal ponds to examine the extent of nitric acid extractable U (U{sub NA}) association with P, S, and extractable Fe, Al, and Mn oxides within deeply weathered fractured shale. The solid phase in many regimes on the site has been exposed to highly buffered acidic (<3.5) groundwater and has been aggressively weathered. Higher correlations occur between U{sub NA} and total P and S (r{sup 2} = 0.76, 0.69, respectively), citrate bicarbonate dithionite extractable Fe (Fed) and Al (Ald) (r{sup 2}=0.87, 0.80, respectively), and acid oxalate extractable or amorphous/poorly crystalline Fe (Feo) (r{sup 2}=0.63) in core material from a field plot known as Area 1 compared to core material from another field plot known as Area 3. In Area 3 core material, linear regression analysis of UNA and total P and S, and Fed, Ald and Feo gave r{sup 2} values of 0.67, 0.4, 0.06, 0.24, and 0.45, respectively. These results showed similar relationships with SEM-wavelength dispersive spectroscopy (WDS) mapping of this material. It is noteworthy that Area 1 geological material has not been as aggressively weathered as Area 3 material due to its physical location from the waste source. In all of the cores, most of the Fe and Al oxides were crystalline, while most of the Mn oxides were amorphous. The greater adsorption and/or fixation of anion complexes of P-U (uranium phosphate) and S onto Fe and Al oxides from Area 1 cores compared to Area 3 core material is probably due to a higher amount of crystalline Fe and Al oxides compared to amorphous Fe and Al oxides and higher Al substitution in Fe oxides in Area 1. This unique study illustrates the relationships between U{sub NA}, total P and S, and Al, Fe and Mn oxides in fractured shale under field conditions which can be used in planning remediation of this site and other similar sites.},
doi = {},
journal = {Environmental Science & Technology},
number = xx, xxxx,
volume = XX,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}