skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sulfur impact on NOx storage, oxygen storage and ammonia breakthrough during cyclic lean/rich operation of a commercial lean NOx trap

Journal Article · · Applied Catalysis B

The objective of the present study was to develop an improved understanding of how sulfur affects the spatiotemporal distribution of reactions and temperature inside a monolithic lean NO{sub x} trap (LNT). These spatiotemporal distributions are believed to be major factors in LNT function, and thus, we expect that a better understanding of these phenomena can benefit the design and operation of commercial LNTs. In our study, we experimentally evaluated a commercial LNT monolith installed in a bench-flow reactor with simulated engine exhaust. The reactor feed gas composition was cycled to simulate fast lean/rich LNT operation at 325 C, and spatiotemporal species and temperature profiles were monitored along the LNT axis at different sulfur loadings. Reactor outlet NO{sub x}, NO, N{sub 2}O, and NH{sub 3} were also measured. Sulfur tended to accumulate in a plug-like fashion in the reactor and progressively inhibited NO{sub x} storage capacity along the axis. The NO{sub x} storage/reduction (NSR) reactions occurred over a relatively short portion of the reactor (NSR zone) under the conditions used in this study, and thus, net NO{sub x} conversion was only significantly reduced at high sulfur loading. Oxygen storage capacity (OSC) was poisoned by sulfur also in a progressive manner but to a lesser extent than the NO{sub x} storage capacity. Global selectivity for N{sub 2}O remained low at all sulfur loadings, but NH{sub 3} selectivity increased significantly with sulfur loading. We conjecture that NH{sub 3} breakthrough increased because of decreasing oxidation of NH{sub 3}, slipping from the NSR zone, by downstream stored oxygen. The NSR and oxygen storage/reduction (OSR) generated distinctive exotherms during the rich phase and at the rich/lean transition. Exotherm locations shifted downstream with sulfur accumulation in a manner that was consistent with the progressive poisoning of NSR and OSR sites.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
932042
Journal Information:
Applied Catalysis B, Vol. 77, Issue 1-2
Country of Publication:
United States
Language:
English