skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Generating nanoscale aggregates from colloidal nanoparticles by various aerosol spray techniques

Abstract

Growing interest in the environmental and health effects of engineered nanostructured materials requires accurate control of cluster morphology and size in order to make valid interpretations of nanomaterial toxicity. We report the comparison of three methods for the generation of aggregated uniform polystyrene latex (PSL) nanospheres from a colloidal suspension. Atomization, ultrasonic generation and electrospray, which utilize distinct mechanisms for the formation of liquid droplets from a PSL colloidal suspension, are explored as potential methods for nanostructured material synthesis. Electrospray produced isolated PSL particles most suited for use in experiments involving exposure to non-aggregated nanoparticles. Though producing the largest cluster size, ultrasonic generation proved to be a relatively straightforward process for reproducibly generating nanoparticle aggregates. Further advantages and disadvantages of each method are presented in relation to future toxicology experiments.

Authors:
 [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Center for Nanophase Materials Sciences
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
931967
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nanotoxicology; Journal Volume: 1; Journal Issue: 2
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; AEROSOLS; ATOMIZATION; LATEX; MORPHOLOGY; POLYSTYRENE; SYNTHESIS; NANOSTRUCTURES; COLLOIDS

Citation Formats

Mahurin, Shannon Mark, and Cheng, Mengdawn. Generating nanoscale aggregates from colloidal nanoparticles by various aerosol spray techniques. United States: N. p., 2007. Web. doi:10.1080/17435390701423760.
Mahurin, Shannon Mark, & Cheng, Mengdawn. Generating nanoscale aggregates from colloidal nanoparticles by various aerosol spray techniques. United States. doi:10.1080/17435390701423760.
Mahurin, Shannon Mark, and Cheng, Mengdawn. Mon . "Generating nanoscale aggregates from colloidal nanoparticles by various aerosol spray techniques". United States. doi:10.1080/17435390701423760.
@article{osti_931967,
title = {Generating nanoscale aggregates from colloidal nanoparticles by various aerosol spray techniques},
author = {Mahurin, Shannon Mark and Cheng, Mengdawn},
abstractNote = {Growing interest in the environmental and health effects of engineered nanostructured materials requires accurate control of cluster morphology and size in order to make valid interpretations of nanomaterial toxicity. We report the comparison of three methods for the generation of aggregated uniform polystyrene latex (PSL) nanospheres from a colloidal suspension. Atomization, ultrasonic generation and electrospray, which utilize distinct mechanisms for the formation of liquid droplets from a PSL colloidal suspension, are explored as potential methods for nanostructured material synthesis. Electrospray produced isolated PSL particles most suited for use in experiments involving exposure to non-aggregated nanoparticles. Though producing the largest cluster size, ultrasonic generation proved to be a relatively straightforward process for reproducibly generating nanoparticle aggregates. Further advantages and disadvantages of each method are presented in relation to future toxicology experiments.},
doi = {10.1080/17435390701423760},
journal = {Nanotoxicology},
number = 2,
volume = 1,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • The cationic dye thionine undergoes slow dissolution in aerosol-OT (AOT) containing solutions of heptane and toluene. By controlling the ratio of [dye]/[AOT], it is possible to obtain varying amounts of monomer, dimer, and higher order aggregates (trimer) in dilute dye solutions. The thionine aggregates exhibit characteristic absorption maxima at 565 and 530 nm for the dimer and trimer forms, respectively. The singlet excited states of these dye aggregates are short-lived ({tau} = 40--63 ps) as they undergo efficient intersystem crossing to generate the triplet excited states. Triplet energy transfer from the excited dye aggregates to monomeric thionine molecules was observedmore » upon excitation with a 532 nm laser pulse. Pulse radiolysis experiments, in which the excited triplet states were generated indirectly, also confirm the finding that the triplet energy cascades down from excited trimer to dimer to monomeric dye. These studies demonstrate the possibility of using H-type dye aggregates as antenna molecules to harvest light energy whereby the aggregate molecules absorb light in different spectral regions and subsequently transfer energy to the monomeric dye.« less
  • Ordered three-dimensional (3-D) assemblies of nanocrystalline zirconia were synthesized from aqueous suspensions of ZrO{sub 2} nanoparticles without the need for hydrocarbon surfactants or solvents to control colloidal crystal growth. Nanoparticles were suspended in mild acid and subsequently titrated from low to neutral pH. The solubility was reduced as the surfaces were neutralized, promoting assembly of the nanoparticles into ordered monoliths. TEM measurements indicated the formation of three-dimensional, hexagonal faceted, micrometer-sized colloidal crystals composed of 4 nm diameter ZrO{sub 2} nanoparticles. Lacking organic surfactants, the colloidal crystals were exceptionally robust and were sintered at high temperatures (300-500 C) for further stability.more » Small-angle X-ray scattering (SAXS) measurements demonstrate that the samples become progressively more amorphous above 350 C, although some ordered domains of nanoparticles persist. Additionally, the heat treatment dramatically increases the surface area of the colloidal crystals as water and residual organics are desorbed, revealing highly controlled interstitial spaces and pores.« less
  • Colloidal nanoparticles prepared by solution synthesis with robust control over particle size, shape, composition, and structure have shown great potential for catalytic applications. However, such colloidal nanoparticles are usually capped with organic ligands (as surfactants) and cannot be directly used as catalyst. We have studied the effect of surfactant removal on the electrocatalytic performance of Pt nanoparticles made by organic solution synthesis. Various methods were applied to remove the oleylamine surfactant, which included thermal annealing, acetic acid washing, and UV-Ozone irradiation, and the treated nanoparticles were applied as electrocatalysts for the oxygen reduction reaction. It was found that the electrocatalyticmore » performance, including electrochemically active surface area and catalytic activity, was strongly dependent on the pretreatment. Among the methods studied here, low-temperature thermal annealing ({approx}185 C) in air was found to be the most effective for surface cleaning without inducing particle size and morphology changes.« less
  • We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO{sub 2}) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9 to 3 keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse.