skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of single crystalline ZnO nanotubes without catalysts and templates

Abstract

Oxide and nitride nanotubes have gained attention for their large surface areas, wide energy band gaps, and hydrophilic natures for various innovative applications. These nanotubes were either grown by templates or multistep processes with uncontrollable crystallinity. Here the authors show that single crystal ZnO nanotubes can be directly grown on planar substrates without using catalysts and templates. These results are guided by the theory of nucleation and the vapor-solid crystal growth mechanism, which is applicable for transforming other nanowires or nanorods into nanotubular structures.

Authors:
 [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Center for Nanophase Materials Sciences
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
931888
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 90
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; CRYSTAL GROWTH; MONOCRYSTALS; NANOTUBES; ZINC OXIDES; FABRICATION; ZnO; nanotubes

Citation Formats

Ivanov, Ilia N, and Geohegan, David B. Formation of single crystalline ZnO nanotubes without catalysts and templates. United States: N. p., 2007. Web.
Ivanov, Ilia N, & Geohegan, David B. Formation of single crystalline ZnO nanotubes without catalysts and templates. United States.
Ivanov, Ilia N, and Geohegan, David B. Mon . "Formation of single crystalline ZnO nanotubes without catalysts and templates". United States. doi:.
@article{osti_931888,
title = {Formation of single crystalline ZnO nanotubes without catalysts and templates},
author = {Ivanov, Ilia N and Geohegan, David B},
abstractNote = {Oxide and nitride nanotubes have gained attention for their large surface areas, wide energy band gaps, and hydrophilic natures for various innovative applications. These nanotubes were either grown by templates or multistep processes with uncontrollable crystallinity. Here the authors show that single crystal ZnO nanotubes can be directly grown on planar substrates without using catalysts and templates. These results are guided by the theory of nucleation and the vapor-solid crystal growth mechanism, which is applicable for transforming other nanowires or nanorods into nanotubular structures.},
doi = {},
journal = {Applied Physics Letters},
number = ,
volume = 90,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • The textural properties of a family of silicate and mixed metal-silicate materials prepared by a nonaqueous sol-gel reaction involving the cubic silicate Si 8O 20(SnMe 3) 8 and metal chlorides MCl 4 (M = Si, Ti, Zr) cross-linking reagents are described. Nitrogen adsorption isotherm data is presented and surface area and pore size distribution analyses for several examples of these materials are developed and correlated with the ratio of cross-linking reagent and the cubic silicate building block at the time of synthesis. Significant surface area and pore size distributions that shift to higher pore diameters are observed as the ratiomore » of cross-linking reagent-to-cubic building block increases. A simple strategy for simultaneously controlling the porosity of these matrices while homogeneously dispersing identical metal centers on their surfaces for next generation catalysts is described.« less
  • Mono and binary transition metal oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air. The transition metal oxide nanotubes were composed of nano-crystallites of metal oxides. The functional groups on the carbon nanofiber templates were essential for the coating of these templates: they acted as adsorption sites for the metal nitrates, ensuring a uniform metal oxide coating. During the removal of the carbon nanofiber templates by calcination in air, the metal oxide coatings promoted the combustion reaction between the carbon nanofibers and oxygen.more » - Graphical abstract: Mono and binary transition metal-oxide nanotubes could be synthesized by the immersion of carbon nanofiber templates into metal nitrate solutions and removal of the templates by heat treatment in air.« less
  • La{sub 2}CuO{sub 4} nanofibers (ca. 30 nm in diameter and 3 {mu}m in length) have been grown in situ by using single walled carbon nanotubes (SWNTs; ca. 2 nm in inner diameter; made via cracking CH{sub 4} over the catalyst of Mg{sub 0.8}Mo{sub 0.05}Ni{sub 0.10}Co{sub 0.05}O {sub x} at 800 deg. C) as templates under mild hydrothermal conditions and a temperature around 60 deg. C. During synthesis, the surfactant poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) and H{sub 2}O{sub 2} were added to disperse SWNTs and oxidize the reactants, respectively. The structure of La{sub 2}CuO{sub 4} nanofibers was confirmed by powder X-ray diffractionmore » (XRD) and their morphologies were observed with field emission scanning electron microscope (FESEM) at the hydrothermal synthesis lasting for 5, 20 and 40 h, respectively. The La{sub 2}CuO{sub 4} crystals grew from needle-like (5 h) through stick-like (20 h) and finally to plate-like (40 h) fibers. Twenty hours is an optimum reaction time to obtain regular crystal fibers. The La{sub 2}CuO{sub 4} nanofibers are probably cubic rather than round and may capsulate SWNTs. - Graphical abstract: La{sub 2}CuO{sub 4} nanofibers have been grown in situ by using single walled carbon nanotubes as templates under mild hydrothermal conditions and a temperature around 60 deg. C. The La{sub 2}CuO{sub 4} crystals grew from needle-like (5 h) through stick-like (20 h) and finally to plate-like (40 h) fibers. The La{sub 2}CuO{sub 4} nanofibers are probably cubic rather than round and may capsulate SWNTs.« less
  • Using transmission electron microscopy (TEM) electron irradiation effects were studied for nanogroove-network structured single-crystalline and dendritic polycrystalline Pt nanosheets 50-60 nm in size. These two nanosheets with nearly the same average groove-width or dendritic spacing of 1.3-1.4 nm were prepared from the mixed and single surfactant liquid crystalline templates, respectively. On exposure to electron beam for 20 min at the acceleration voltage of 200 kV, the nanogrooved nanosheets were morphologically little affected, but the dendritic ones were transformed into less branched polycrystalline structures with spacings distributed around {approx}1.7 nm. The shape transformation of the latter occurred by the combined mechanismmore » of segmental migration and atomic diffusion. These observations indicate that the nanogrooved Pt nanosheets are highly stabilized by the grooved but crystallographically continuous Pt framework, leading to their extremely high thermo-resistance, in marked contrast to the polycrystalline dendritic structures constructed of crystallographically discontinuous linkages of nanoblocks.« less
  • Heterojunction light-emitting diodes based on n-ZnO nanowires/ZnO single-crystalline films/p-GaN structure have been demonstrated for an improved electroluminescence performance. A highly efficient ultraviolet emission was observed under forward bias. Compared with conventional n-ZnO/p-GaN structure, high internal quantum efficiency and light extraction efficiency were simultaneously considered in the proposed diode. In addition, the diode can work continuously for ∼10 h with only a slight degradation in harsh environments, indicating its good reliability and application prospect in the future. This route opens possibilities for the development of advanced nanoscale devices in which the advantages of ZnO single-crystalline films and nanostructures can be integrated together.