skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonactive-Power-Related Ancillary Services provided by Distribute Energy Resources

Abstract

The nonactive-power-related ancillary services provided by distributed energy (DE) resources are categorized by voltage regulation, reactive power compensation, power factor correction, voltage and/or current unbalance compensation, and harmonics compensation. An instantaneous nonactive power theory is adopted to control the DE system to provide these ancillary services. Three control schemes, including nonactive current compensation, power factor correction, and voltage regulation, are developed which can perform one or more of the ancillary services. The control schemes are implemented in a DE system in simulation and experiments. The simulation and the experimental results show that DE is feasible for providing nonactive-power-related ancillary services.

Authors:
 [1];  [1];  [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Cooling, Heating and Power Integration Laboratory
Sponsoring Org.:
OE USDOE - Office of Electric Transmission and Distribution
OSTI Identifier:
931715
DOE Contract Number:
AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 20070624, 20070628
Country of Publication:
United States
Language:
English
Subject:
ancillary services; distributed energy resources; harmonics; nonactive power; unbalance; voltage regulation

Citation Formats

Xu, Yan, Tolbert, Leon M, Rizy, D Tom, and Kueck, John D. Nonactive-Power-Related Ancillary Services provided by Distribute Energy Resources. United States: N. p., 2006. Web.
Xu, Yan, Tolbert, Leon M, Rizy, D Tom, & Kueck, John D. Nonactive-Power-Related Ancillary Services provided by Distribute Energy Resources. United States.
Xu, Yan, Tolbert, Leon M, Rizy, D Tom, and Kueck, John D. Sun . "Nonactive-Power-Related Ancillary Services provided by Distribute Energy Resources". United States. doi:.
@article{osti_931715,
title = {Nonactive-Power-Related Ancillary Services provided by Distribute Energy Resources},
author = {Xu, Yan and Tolbert, Leon M and Rizy, D Tom and Kueck, John D},
abstractNote = {The nonactive-power-related ancillary services provided by distributed energy (DE) resources are categorized by voltage regulation, reactive power compensation, power factor correction, voltage and/or current unbalance compensation, and harmonics compensation. An instantaneous nonactive power theory is adopted to control the DE system to provide these ancillary services. Three control schemes, including nonactive current compensation, power factor correction, and voltage regulation, are developed which can perform one or more of the ancillary services. The control schemes are implemented in a DE system in simulation and experiments. The simulation and the experimental results show that DE is feasible for providing nonactive-power-related ancillary services.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Distributed energy resources (DE) have been widely used in the power systems to supply active power, and most of the present DE resources are operated with limited or without nonactive power capability. This paper shows that with a slight modification in hardware configuration and a small boost in the power ratings, as well as proper implementation of control strategies, a DE system with a power electronics converter interface can provide active power and nonactive power simultaneously and independently. A DE can provide dynamic voltage regulation to the local bus because of its nonactive power capability. Furthermore, the proposed DE controlmore » method in this paper can effectively compensate the unbalance in the local voltage. The system requirements such as the inverter current rating and the dc voltage rating are discussed. The analysis of the system requirements to provide nonactive power shows that it is cost-effective to have DE provide voltage regulation.« less
  • Abstract -- Distributed energy resources (DER) with a power electronics inverter interface can provide both active power and nonactive power simultaneously and independently. A decoupled control algorithm of active power and nonactive power is developed based on the instantaneous active power and nonactive power theory. A current limiter is combined to the control algorithm, and it ensures that the inverter is not overloaded. During the normal system operation, the active power has higher priority over the nonactive power so that the energy from a DER can be fully transferred to the grid. Within the inverter s capability, nonactive power ismore » provided to the grid as required. With this control algorithm, the inverter s capabilities are taken full advantage at all times, both in terms of functionality as well as making use of its full KVA rating. Through the algorithm, the inverter s active power and nonactive power are controlled directly, simultaneously, and independently. Several experimental results fully demonstrate the validity and effectiveness of this new control algorithm. As evidenced by the fast dynamic response that results, a DER system with the control algorithm can provide full services to the grid in both steady state and during transient events.« less
  • Demand response (DR) resources present a potentially important source of grid flexibility however, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado "test system". We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating reserves: frequency regulation, contingency reserve, and flexibility (or ramping) reserve. There are significant variations in the availabilities of different types of DR resources, which affect bothmore » the operational savings as well as the revenue for each DR resource. The results presented include the system-wide avoided fuel and generator start-up costs as well as the composite revenue for each DR resource by energy and operating reserves.« less
  • Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating
  • Short-term power fluctuations from wind farms may affect interconnected-grid operating costs and stability. With the increasing availability of wind power worldwide, this has become a concern for some utilities. Under electric industry restructuring in the United States, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. However, the magnitude of the impact and the effect of aggregation of multiple turbines are not well quantified due to a lack of actual wind farm power data. This paper analyzes individual turbine and aggregate power output data from the German ''250-MW Wind'' datamore » project. Electric system load following and regulation impacts are examined as a function of the number of turbines and turbine spacing in order to quantify the impacts of aggregation. The results show a significant decrease in the relative system regulation burden with increasing number of turbines, even if the turbines are in close proximity.« less