skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Using a Fast-Scanning Electrical Nanoparticle Sizer to Characterize Nanoparticles from Laser Ablation

Abstract

A Fast-Scanning Electrical Nanoparticle Sizer (FSENS) consisting of a Po 210 bipolar charger, a Nano-DMA, and an aerosol electrometer was used to characterize nanoparticles generated by laser ablating the surfaces of cement, chromium-embedded cement, stainless steel, and alumina samples. Different from previous studies, bimodal size distributions, with the nucleation mode having a geometric mean diameter ranging from 5.7-6.6 nm and a geometric standard deviation varying from 1.225-1.379, were observed for all the experimental runs. The curve fitting shows that the bimodal size distribution produced in the laser ablation can be best fitted by a lognormal distribution for the nucleation mode and a Rosin-Rammler distribution for the coagulation mode. At steady state the geometric mean diameter of the coagulation mode was affected by the laser wavelength and target material, but was less influenced by laser energy for a given wavelength. The total particle number concentrations of the two modes appear to be parabolic with respect to the laser fluence. At a given fluence, the stainless-steel sample produced the highest particle number concentration with 532- and 1064-nm lasers; the alumina sample produced the lowest particle number concentration with 266- and 1064-nm lasers. The chromium-embedded cement sample produced fewer particles with 532- andmore » 1064 nm lasers than the pure cement sample. This study also demonstrated that FSENS can provide snapshots of the nanoparticle dynamics during laser ablation in cases of low laser fluence.« less

Authors:
 [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Science (SC); Work for Others (WFO)
OSTI Identifier:
931479
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Aerosol Air Quality Research; Journal Volume: 7; Journal Issue: 1
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ABLATION; AEROSOLS; CEMENTS; DISTRIBUTION; ELECTROMETERS; LASERS; NUCLEATION; STAINLESS STEELS; TARGETS; WAVELENGTHS

Citation Formats

Chen, Da-Ren, and Cheng, Mengdawn. Using a Fast-Scanning Electrical Nanoparticle Sizer to Characterize Nanoparticles from Laser Ablation. United States: N. p., 2007. Web.
Chen, Da-Ren, & Cheng, Mengdawn. Using a Fast-Scanning Electrical Nanoparticle Sizer to Characterize Nanoparticles from Laser Ablation. United States.
Chen, Da-Ren, and Cheng, Mengdawn. Mon . "Using a Fast-Scanning Electrical Nanoparticle Sizer to Characterize Nanoparticles from Laser Ablation". United States. doi:.
@article{osti_931479,
title = {Using a Fast-Scanning Electrical Nanoparticle Sizer to Characterize Nanoparticles from Laser Ablation},
author = {Chen, Da-Ren and Cheng, Mengdawn},
abstractNote = {A Fast-Scanning Electrical Nanoparticle Sizer (FSENS) consisting of a Po 210 bipolar charger, a Nano-DMA, and an aerosol electrometer was used to characterize nanoparticles generated by laser ablating the surfaces of cement, chromium-embedded cement, stainless steel, and alumina samples. Different from previous studies, bimodal size distributions, with the nucleation mode having a geometric mean diameter ranging from 5.7-6.6 nm and a geometric standard deviation varying from 1.225-1.379, were observed for all the experimental runs. The curve fitting shows that the bimodal size distribution produced in the laser ablation can be best fitted by a lognormal distribution for the nucleation mode and a Rosin-Rammler distribution for the coagulation mode. At steady state the geometric mean diameter of the coagulation mode was affected by the laser wavelength and target material, but was less influenced by laser energy for a given wavelength. The total particle number concentrations of the two modes appear to be parabolic with respect to the laser fluence. At a given fluence, the stainless-steel sample produced the highest particle number concentration with 532- and 1064-nm lasers; the alumina sample produced the lowest particle number concentration with 266- and 1064-nm lasers. The chromium-embedded cement sample produced fewer particles with 532- and 1064 nm lasers than the pure cement sample. This study also demonstrated that FSENS can provide snapshots of the nanoparticle dynamics during laser ablation in cases of low laser fluence.},
doi = {},
journal = {Aerosol Air Quality Research},
number = 1,
volume = 7,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}