skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tracking and Monitoring of Radioactive Materials in the Commercial Hazardous Materials Supply Chain

Abstract

One of the main components of the Environmental Protection Agency's (EPA) Clean Materials Program is to prevent the loss of radioactive materials through the use of tracking technologies. If a source is inadvertently lost or purposely abandoned or stolen, it is critical that the source be recovered before harm to the public or the environment occurs. Radio frequency identification (RFID) tagging on radioactive sources is a technology that can be operated in the active or passive mode, has a variety of frequencies available allowing for flexibility in use, is able to transmit detailed data and is discreet. The purpose of the joint DOE and EPA Radiological Source Tracking and Monitoring (RadSTraM) project is to evaluate the viability, effectiveness and scalability of RFID technology under a variety of transportation scenarios. The goal of the Phase II was to continue testing integrated RFID tag systems from various vendors for feasibility in tracking radioactive sealed sources which included the following performance objectives: 1. Validate the performance of RFID intelligent systems to monitor express air shipments of medical radioisotopes in the nationwide supply chain, 2. Quantify the reliability of these tracking systems with regards to probability of tag detection and operational reliability, 3. Determinemore » if the implementation of these systems improves manpower effectiveness, and 4. Demonstrate that RFID tracking and monitoring of radioactive materials is ready for large scale deployment at the National level. For purposes of analysis, the test scenario employed in this study utilized the real world commerce supply chain process for radioactive medical isotopes to validate the performance of intelligent RFID tags. Three different RFID systems were assessed from a shipping and packaging perspective, included varied environmental conditions, varied commodities on board vehicles, temporary staging in shipping terminals using various commodities and normal transportation handling. We tracked 32 air express (AE) shipments from a medical radioisotope (MR) production facility in Boston, MA to ORNL in Oak Ridge, TN. Each RFID system was individually tested in Type A modified packaging with differing quantities of Phosphorus-32 (1,000 μci, 500 μci and 250 μci) for 16 shipments per system. Three of these shipments per system contained dry ice (9 total). An additional 16 shipments were tested that contained one tag from each system using Type A packaging without Phosphorus-32. Twelve of these shipments contained dry ice. RFID interrogators for each system were installed at four waypoints along the 1,000 mile shipping route from source to designation via air and surface. Each package was expected to be detected by its corresponding interrogator(s) at each way point. System A's overall probability of detection was 77 percent, System B's overall probability of detection was 20 percent and System C's overall probability was 75 percent. The presence of more than one RFID system in a shipment did not appear to have an effect on any of the three systems tested. However, no tests of significance could be performed because group sample sizes did not satisfy the standard binomial test-of-significance between independent samples. Preliminary analysis of the data using pair-wise comparison (in process) is expected to show some (possibly significant) differences due to packaging and the effects of dry ice on the tags. Phase II of the RadSTraM project verified that RFID tagging can be applied to the tracking and monitoring of medical radioisotope air express shipments. This study demonstrated that active RFID tagging systems can be feasibly integrated and scaled into the nation-wide supply chain to track and monitor medical radioisotopes.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
Work for Others (WFO)
OSTI Identifier:
931106
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: 15th International Symposium on the Packaging and Transportation of Radioactive Materials - PATRAM 2007, Miami, FL, USA, 20071020, 20071026
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; RADIATION MONITORING; IDENTIFICATION SYSTEMS; PACKAGING; PERFORMANCE; RADIOACTIVE MATERIALS; SEALED SOURCES; AIR TRANSPORT; LAND TRANSPORT; Tracking Monitoring Radioactive Materials Commerce Commercial Hazardous Materials HAZMAT Supply Chain

Citation Formats

Walker, Randy M, Kopsick, Deborah A, Warren, Tracy A, Abercrombie, Robert K, Sheldon, Frederick T, Hill, David E, Gross, Ian G, and Smith, Cyrus M. Tracking and Monitoring of Radioactive Materials in the Commercial Hazardous Materials Supply Chain. United States: N. p., 2007. Web.
Walker, Randy M, Kopsick, Deborah A, Warren, Tracy A, Abercrombie, Robert K, Sheldon, Frederick T, Hill, David E, Gross, Ian G, & Smith, Cyrus M. Tracking and Monitoring of Radioactive Materials in the Commercial Hazardous Materials Supply Chain. United States.
Walker, Randy M, Kopsick, Deborah A, Warren, Tracy A, Abercrombie, Robert K, Sheldon, Frederick T, Hill, David E, Gross, Ian G, and Smith, Cyrus M. Mon . "Tracking and Monitoring of Radioactive Materials in the Commercial Hazardous Materials Supply Chain". United States. doi:.
@article{osti_931106,
title = {Tracking and Monitoring of Radioactive Materials in the Commercial Hazardous Materials Supply Chain},
author = {Walker, Randy M and Kopsick, Deborah A and Warren, Tracy A and Abercrombie, Robert K and Sheldon, Frederick T and Hill, David E and Gross, Ian G and Smith, Cyrus M},
abstractNote = {One of the main components of the Environmental Protection Agency's (EPA) Clean Materials Program is to prevent the loss of radioactive materials through the use of tracking technologies. If a source is inadvertently lost or purposely abandoned or stolen, it is critical that the source be recovered before harm to the public or the environment occurs. Radio frequency identification (RFID) tagging on radioactive sources is a technology that can be operated in the active or passive mode, has a variety of frequencies available allowing for flexibility in use, is able to transmit detailed data and is discreet. The purpose of the joint DOE and EPA Radiological Source Tracking and Monitoring (RadSTraM) project is to evaluate the viability, effectiveness and scalability of RFID technology under a variety of transportation scenarios. The goal of the Phase II was to continue testing integrated RFID tag systems from various vendors for feasibility in tracking radioactive sealed sources which included the following performance objectives: 1. Validate the performance of RFID intelligent systems to monitor express air shipments of medical radioisotopes in the nationwide supply chain, 2. Quantify the reliability of these tracking systems with regards to probability of tag detection and operational reliability, 3. Determine if the implementation of these systems improves manpower effectiveness, and 4. Demonstrate that RFID tracking and monitoring of radioactive materials is ready for large scale deployment at the National level. For purposes of analysis, the test scenario employed in this study utilized the real world commerce supply chain process for radioactive medical isotopes to validate the performance of intelligent RFID tags. Three different RFID systems were assessed from a shipping and packaging perspective, included varied environmental conditions, varied commodities on board vehicles, temporary staging in shipping terminals using various commodities and normal transportation handling. We tracked 32 air express (AE) shipments from a medical radioisotope (MR) production facility in Boston, MA to ORNL in Oak Ridge, TN. Each RFID system was individually tested in Type A modified packaging with differing quantities of Phosphorus-32 (1,000 μci, 500 μci and 250 μci) for 16 shipments per system. Three of these shipments per system contained dry ice (9 total). An additional 16 shipments were tested that contained one tag from each system using Type A packaging without Phosphorus-32. Twelve of these shipments contained dry ice. RFID interrogators for each system were installed at four waypoints along the 1,000 mile shipping route from source to designation via air and surface. Each package was expected to be detected by its corresponding interrogator(s) at each way point. System A's overall probability of detection was 77 percent, System B's overall probability of detection was 20 percent and System C's overall probability was 75 percent. The presence of more than one RFID system in a shipment did not appear to have an effect on any of the three systems tested. However, no tests of significance could be performed because group sample sizes did not satisfy the standard binomial test-of-significance between independent samples. Preliminary analysis of the data using pair-wise comparison (in process) is expected to show some (possibly significant) differences due to packaging and the effects of dry ice on the tags. Phase II of the RadSTraM project verified that RFID tagging can be applied to the tracking and monitoring of medical radioisotope air express shipments. This study demonstrated that active RFID tagging systems can be feasibly integrated and scaled into the nation-wide supply chain to track and monitor medical radioisotopes.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • In the post September 11, 2001 (9/11) world the federal government has increased its focus on the manufacturing, distributing, warehousing, and transporting of hazardous materials. In 2002, Congress mandated that the Transportation Security Agency (TSA) designate a subset of hazardous materials that could pose a threat to the American public when transported in sufficiently large quantities. This subset of hazardous materials, which could be weaponized or subjected to a nefarious terrorist act, was designated as Security Sensitive Hazardous Materials (SSHM). Radioactive materials (RAM) were of special concern because actionable intelligence had revealed that Al Qaeda desired to develop a homemademore » nuclear device or a dirty bomb to use against the United States (US) or its allies.1 Because of this clear and present danger, it is today a national priority to develop and deploy technologies that will provide for visibility and real-time exception notification of SSHM and Radioactive Materials in Quantities of Concern (RAMQC) in international commerce. Over the past eight years Oak Ridge National Laboratory (ORNL) has been developing, implementing, and deploying sensor-based technologies to enhance supply chain visibility. ORNL s research into creating a model for shipments, known as IntelligentFreight, has investigated sensors and sensor integration methods at numerous testbeds throughout the national supply chain. As a result of our research, ORNL believes that most of the information needed by supply chain partners to provide shipment visibility and exceptions-based reporting already exists but is trapped in numerous proprietary or agency-centric databases.« less
  • As part of Sandia National Laboratories' (SNL) pollution prevention program a system is under development to track the movement of hazardous and radioactive materials from procurement, through use, to final disposition. The information provided by this system will improve the flow and enhance the quality of data, avoid duplication of effort, facilitate timely and accurate reporting, better support the information needs of various Environmental, Safety, and Health (ES H) programs, and allow waste to be minimized more effectively. Such a comprehensive system will incorporate information from other sources and build upon existing databases. The component include the Chemical Information System/Materialmore » Safety Data Sheet (CIS/MSDS) system installed by AT T Bell Laboratories (AT T-BL) at SNL in Livermore, along with a barcode chemical waste tracking system already in operation at SNL in Albuquerque. Also being developed in Albuquerque are Process Waste Assessments, a radioactive material tracking system, and a radioactive/mixed waste tracking system. A SNL and AT T-BL joint project is addressing how PWAs will link raw materials to waste streams. With a cradle-to-grave'' tracking system, it is possible to assess both financial and environmental life cycle costs. Once in place, this information will improve long-run efficiency and environmental protection, and provide benefits exceeding the initial demands placed upon personnel.« less
  • As part of Sandia National Laboratories` (SNL) pollution prevention program a system is under development to track the movement of hazardous and radioactive materials from procurement, through use, to final disposition. The information provided by this system will improve the flow and enhance the quality of data, avoid duplication of effort, facilitate timely and accurate reporting, better support the information needs of various Environmental, Safety, and Health (ES&H) programs, and allow waste to be minimized more effectively. Such a comprehensive system will incorporate information from other sources and build upon existing databases. The component include the Chemical Information System/Material Safetymore » Data Sheet (CIS/MSDS) system installed by AT&T Bell Laboratories (AT&T-BL) at SNL in Livermore, along with a barcode chemical waste tracking system already in operation at SNL in Albuquerque. Also being developed in Albuquerque are Process Waste Assessments, a radioactive material tracking system, and a radioactive/mixed waste tracking system. A SNL and AT&T-BL joint project is addressing how PWAs will link raw materials to waste streams. With a ``cradle-to-grave`` tracking system, it is possible to assess both financial and environmental life cycle costs. Once in place, this information will improve long-run efficiency and environmental protection, and provide benefits exceeding the initial demands placed upon personnel.« less
  • The U.S. Department of Energy (DOE) has a significant programmatic interest in the safe and secure routing and transportation of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States, including shipments entering the country from locations outside U.S borders. In any shipment of SNF/HLW, there are multiple chains; a jurisdictional chain as the material moves between jurisdictions (state, federal, tribal, administrative), a physical supply chain (which mode), as well as a custody chain (which stakeholder is in charge/possession) of the materials being transported. Given these interconnected networks, there lies vulnerabilities, whether in lack of communication betweenmore » interested stakeholders or physical vulnerabilities such as interdiction. By identifying key links and nodes as well as administrative weaknesses, decisions can be made to harden the physical network and improve communication between stakeholders. This paper examines the parallel chains of oversight and custody as well as the chain of stakeholder interests for the shipments of SNF/HLW and the potential impacts on systemic resiliency. Using the Crystal River shutdown location as well as a hypothetical international shipment brought into the United States, this paper illustrates the parallel chains and maps them out visually.« less
  • This paper presents an overview of the hazardous materials and waste tracking system developed for an aerospace company. The technical approach used is described. A case study of a recently developed hazardous materials and waste tracking system is presented. Finally, a summary and conclusions are presented.