skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication

Abstract

Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping. Natural gas combusted over partial oxidation catalysts in the exhaust can be used to obtain the rich exhaust conditions necessary for catalyst regeneration. Thus, the lean NOx trap technology is well suited for lean natural gas engine applications. One potential limitation of the lean NOx trap technology is sulfur poisoning. Sulfur compounds directly bond to the NOx trapping sites of the catalyst and render them ineffective; over time, the sulfur poisoning leads to degradation in overall NOx reduction performance. In order to mitigate the effects of sulfur poisoning, a process has been developed to restore catalyst activity after sulfur poisoning has occurred. The process is an aqueous-based wash process that removes the poisoned sorbate component of the catalyst. A new sorbate component is reapplied after removal of the poisoned sorbate. The processmore » is low cost and does not involve reapplication of precious metal components of the catalyst. Experiments were conducted to investigate the feasibility of the washing process on a lean 8.3-liter natural gas engine on a dynamometer platform. The catalyst was rapidly sulfur poisoned with bottled SO2 gas; then, the catalyst sorbate was washed and reapplied and performance was re-evaluated. Results show that the sorbate reapplication process is effective at restoring lost performance due to sulfur poisoning. Specific details relative to the implementation of the process for large stationary natural gas engines will be discussed.« less

Authors:
 [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC)
Sponsoring Org.:
OE USDOE - Office of Electric Transmission and Distribution
OSTI Identifier:
930995
DOE Contract Number:
AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: ASME Internal Combustion Engine Division Fall Technical Conference, Charleston, SC, USA, 20071014, 20071017
Country of Publication:
United States
Language:
English

Citation Formats

Parks, II, James E. Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication. United States: N. p., 2007. Web. doi:10.1115/ICEF2007-1628.
Parks, II, James E. Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication. United States. doi:10.1115/ICEF2007-1628.
Parks, II, James E. Mon . "Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication". United States. doi:10.1115/ICEF2007-1628.
@article{osti_930995,
title = {Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication},
author = {Parks, II, James E},
abstractNote = {Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping. Natural gas combusted over partial oxidation catalysts in the exhaust can be used to obtain the rich exhaust conditions necessary for catalyst regeneration. Thus, the lean NOx trap technology is well suited for lean natural gas engine applications. One potential limitation of the lean NOx trap technology is sulfur poisoning. Sulfur compounds directly bond to the NOx trapping sites of the catalyst and render them ineffective; over time, the sulfur poisoning leads to degradation in overall NOx reduction performance. In order to mitigate the effects of sulfur poisoning, a process has been developed to restore catalyst activity after sulfur poisoning has occurred. The process is an aqueous-based wash process that removes the poisoned sorbate component of the catalyst. A new sorbate component is reapplied after removal of the poisoned sorbate. The process is low cost and does not involve reapplication of precious metal components of the catalyst. Experiments were conducted to investigate the feasibility of the washing process on a lean 8.3-liter natural gas engine on a dynamometer platform. The catalyst was rapidly sulfur poisoned with bottled SO2 gas; then, the catalyst sorbate was washed and reapplied and performance was re-evaluated. Results show that the sorbate reapplication process is effective at restoring lost performance due to sulfur poisoning. Specific details relative to the implementation of the process for large stationary natural gas engines will be discussed.},
doi = {10.1115/ICEF2007-1628},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • We report observations of the nature and spatial distribution of sulfur species on a sulfated Ba-based commercial lean NO{sub x} trap (LNT) catalyst. The monolithic catalyst was sulfated in a bench flow reactor during 60/4-s NO{sub x} storage/reduction cycling to achieve a total sulfur loading of 3.4 g L{sup -1} of catalyst. Washcoat composition, structure and sulfur distribution were analyzed with electron probe microanalysis, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed reduction. The most significant washcoat elements of catalytic relevance were Pt, Pd, Rh, Ba, Ce, Zr, Mg, Al, and these were present mainly in four distinct domains;more » Mg/Al mixed oxide with Pt, Ce; Al oxide with Rh, Pd; Ce/Zr mixed oxide with Pt, Pd, Ba (high Ba content); Ce/Zr mixed oxide with Pt, Pd, Ba (lower Ba content). Sulfur was present in the form of sulfates that decreased in concentration along the LNT axis from front to back. Barium showed the highest sulfur affinity leading to a plug-like axial progression of its sulfation. The sulfation of AI, Mg/Al, and Ce/Zr oxides was less vigorous with a more axially dispersed and less penetrating front.« less
  • We investigate the effects of initial sulfur loadings on the desulfation chemistry and the subsequent final activity of a commercial LNT catalyst. Identical total amounts of SO2 are applied to the samples, albeit with the frequency of desulfation varied. The results indicate that performance is better with less frequent desulfations. The greater the amount of sulfur deposited before desulfation, the more amount of SO2 evolution before H2S is observed during desulfation, which can be explained by two sequential reactions; initial conversion of sulfate to SO2, followed by the reduction of SO2 to H2S. After completing all sulfation/desulfation steps, the samplemore » with only a single desulfation results in a fairly uniform sulfur distribution along the z-axis inside of the monolith. We expect that the results obtained in this study will provide useful information for optimizing regeneration strategies in vehicles that utilize the LNT technology.« less
  • Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enablemore » increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.« less
  • In this study, high-temperature deactivation of a fully-formulated lean NOx trap (LNT) is investigated with an accelerated aging protocol where accelerated aging is accomplished by rapid temperature cycling and by higher temperatures. Thermal aging is carried out in a bench-flow reactor at nominal temperatures of 700, 800, 900, and 1000 C using an aging cycle consisting of a 130s lean-phase and a 50s rich-phase. After a prescribed number of lean/rich aging cycles, the NOx conversion of the aged LNT is evaluated at 200, 300, and 400 C. The NOx performance is obtained at a GHSV of 30,000 h-1 using anmore » evaluation cycle consisting of a 60s lean-phase and 5s rich-phase. The effects of aging on the LNT washcoat are determined with EPMA, XRD, STEM/EDS, and BET. Aging at 700 and 800 C has a minimal effect on LNT performance and material properties. However, at aging temperatures of 900 and 1000 C reduction in surface area and sintering of PGM particles are observed and result in a drastic reduction in NOx conversion. Additionally, after aging at 900 C and 1000 C the NOx storage medium, BaCO3, is no longer visible in the XRD patterns, even though a Ba-phase identified by EPMA still exists in all aged samples. BaAl2O4 is not identified at any aging temperatures; possibly due to stabilization effects provided by washcoat additives present in this particular LNT.« less
  • A novel reaction protocol was designed to decouple the effects of thermal deactivation from those due to, for example, incomplete de-sulfation during regeneration steps of Ba-based lean NOx trap catalysts. The protocol was applied to two samples: a Pt-BaO/Al2O3 model catalyst, and an enhanced model sample doped with promoter species. The results obtained from the reaction protocol demonstrate that regeneration (desulfation) temperatures need to be maintained below those that lead to significant Pt sintering in order to prevent permanent deactivation. In addition, the modified reaction protocol allows us to compare the regeneration behavior of samples with varying degrees of sulfation,more » while other approaches have difficulty differentiating the effects of thermal aging from those of sulfation. We believe that this approach provides a convenient way both to assess the relative sensitivities of various catalysts to regeneration conditions, and to develop regeneration strategies that minimize the separate but often linked deactivation effects of sulfation and high temperatures.« less