skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower

Abstract

Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full usefulmore » life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC); National Transportation Research Center
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
930947
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: Society of Automotive Engineers Powertrain and Fluids Meeting, Chicago, IL, USA, 20071029, 20071101
Country of Publication:
United States
Language:
English
Subject:
02 PETROLEUM; 10 SYNTHETIC FUELS; 33 ADVANCED PROPULSION SYSTEMS; ETHANOL; ETHANOL FUELS; FEDERAL TEST PROCEDURE; FUEL CONSUMPTION; GASOLINE; SERVICE LIFE; ENGINES; ethanol; E85; Saab BioPower; Fuel Economy; Emissions

Citation Formats

West, Brian H, Lopez Vega, Alberto, Theiss, Timothy J, Graves, Ronald L, Storey, John Morse, and Lewis Sr, Samuel Arthur. Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower. United States: N. p., 2007. Web.
West, Brian H, Lopez Vega, Alberto, Theiss, Timothy J, Graves, Ronald L, Storey, John Morse, & Lewis Sr, Samuel Arthur. Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower. United States.
West, Brian H, Lopez Vega, Alberto, Theiss, Timothy J, Graves, Ronald L, Storey, John Morse, and Lewis Sr, Samuel Arthur. Mon . "Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower". United States. doi:.
@article{osti_930947,
title = {Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower},
author = {West, Brian H and Lopez Vega, Alberto and Theiss, Timothy J and Graves, Ronald L and Storey, John Morse and Lewis Sr, Samuel Arthur},
abstractNote = {Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full useful life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. This report details the results of these evaluations.
  • No abstract prepared.
  • This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Marketmore » Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.« less
  • The papers in this volume describe the following fuel technologies: injection rate shaping, automated patternator, injection nozzle design, plain-jet airblast atomizer, volatile liquid flashing, demand delivery system, compound port fuel injector nozzle, disk-type gasoline injector, and IR-laser initiated combustion. Other papers discuss fuel atomization, power control of IC engines, diagnosis of working unevenness of each cylinder, air-fuel ratio excursions during load and fueling transients, and models of droplet thermodynamic and dynamic behavior. All papers have been processed separately for inclusion on the data base.