skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced Ferrite Nanoparticles as MRI Contrast Agents

; ; ; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Org.:
Doe - Office Of Science
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Magnetism and Magnetic Materials; Journal Volume: 311
Country of Publication:
United States
national synchrotron light source

Citation Formats

Shultz,M., Calvin, S., Fatouros, P., Morrison, S., and Carpenter, E.. Enhanced Ferrite Nanoparticles as MRI Contrast Agents. United States: N. p., 2007. Web. doi:10.1016/j.jmmm.2006.10.1188.
Shultz,M., Calvin, S., Fatouros, P., Morrison, S., & Carpenter, E.. Enhanced Ferrite Nanoparticles as MRI Contrast Agents. United States. doi:10.1016/j.jmmm.2006.10.1188.
Shultz,M., Calvin, S., Fatouros, P., Morrison, S., and Carpenter, E.. Mon . "Enhanced Ferrite Nanoparticles as MRI Contrast Agents". United States. doi:10.1016/j.jmmm.2006.10.1188.
title = {Enhanced Ferrite Nanoparticles as MRI Contrast Agents},
author = {Shultz,M. and Calvin, S. and Fatouros, P. and Morrison, S. and Carpenter, E.},
abstractNote = {},
doi = {10.1016/j.jmmm.2006.10.1188},
journal = {Journal of Magnetism and Magnetic Materials},
number = ,
volume = 311,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
  • Cited by 15
  • Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b =more » 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.« less
  • Purpose: To examine the feasibility of using the MRI blood pool agent NC100150 for evaluation of tumor blood volume (TBV) estimates by both dynamic contrast-enhanced MRI (DCE-MRI) and susceptibility contrast MRI assays in an experimental tumor. Contrast agent clearance (K{sup trans}; depends on perfusion and permeability) from the DCE-MRI time curves was estimated, and changes in TBV and K{sup trans} were measured after administration of two drugs that reduce perfusion by different mechanisms. Methods and materials: The DCE-MRI experiments were simulated with expected physiologic values for the C3H mouse mammary carcinoma. The C3H tumor was examined by DCE-MRI and susceptibilitymore » contrast MRI with NC100150 (NC100150 Injection, Clariscan; Amersham Health, Oslo, Norway) after treatment with either hydralazine or combretastatin (Oxigene, Boston, MA). Results: Simulations showed that reliable estimates of changes in TBV and K{sup trans} could be performed with DCE-MRI. Hydralazine was shown to reduce TBV as measured by both assays and to reduce K{sup trans}. Dynamic contrast-enhanced MRI also suggested that TBV and K{sup trans} were reduced in combretastatin-treated tumors, and the TBV reduction was confirmed by susceptibility contrast MRI. Data suggested the drug to affect mainly the total TBV, whereas microvessels as such seemed less altered. Conclusion: The study supports the use of the combined DCE-MRI and susceptibility contrast MRI assay with a blood pool agent in characterizing tumors and their response to treatment.« less
  • Purpose: To systematically screen the tumor contrast enhancement of locally advanced cervical cancers to assess the prognostic value of two descriptive parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Methods and Materials: This study included a prospectively collected cohort of 81 patients who underwent DCE-MRI with gadopentetate dimeglumine before chemoradiotherapy. The following descriptive DCE-MRI parameters were extracted voxel by voxel and presented as histograms for each time point in the dynamic series: normalized relative signal increase (nRSI) and normalized area under the curve (nAUC). The first to 100th percentiles of the histograms were included in a log-rank survival test,more » resulting in p value and relative risk maps of all percentile-time intervals for each DCE-MRI parameter. The maps were used to evaluate the robustness of the individual percentile-time pairs and to construct prognostic parameters. Clinical endpoints were locoregional control and progression-free survival. The study was approved by the institutional ethics committee. Results: The p value maps of nRSI and nAUC showed a large continuous region of percentile-time pairs that were significantly associated with locoregional control (p < 0.05). These parameters had prognostic impact independent of tumor stage, volume, and lymph node status on multivariate analysis. Only a small percentile-time interval of nRSI was associated with progression-free survival. Conclusions: The percentile-time screening identified DCE-MRI parameters that predict long-term locoregional control after chemoradiotherapy of cervical cancer.« less
  • Structural characterization of a series of Eu{sup 3+} amide macrocycle complexes was performed using luminescence spectroscopy. Formation constants for the complexes as well as structure of the first coordination sphere was investigated for the entire series.