skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dispersion of Single-Walled Carbon Nanotubes in Poly(E-caprolactone)

Abstract

The dispersion of single-walled carbon nanotubes (SWNT) in poly({var_epsilon}-caprolactone) with the aid of a zwitterionic surfactant is reported. Melt rheology and electrical conductivity measurements indicate geometrical percolation and electrical percolation for nanocomposites with {approx}0.08 wt % SWNT, implying an effective anisotropy for the nanotubes of at least 600. Spectroscopic measurements and comparison of dispersion using other surfactants established that the excellent dispersion is a result of the compatibilizing effect of the zwitterionic surfactant.

Authors:
;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Org.:
Doe - Office Of Science
OSTI Identifier:
930363
Report Number(s):
BNL-81082-2008-JA
Journal ID: ISSN 0024-9297; TRN: US200904%%527
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Journal Article
Resource Relation:
Journal Name: Macromolecules; Journal Volume: 40
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; DISPERSIONS; CARBON; ELECTRIC CONDUCTIVITY; NANOTUBES; RHEOLOGY; SURFACTANTS; ORGANIC POLYMERS; national synchrotron light source

Citation Formats

Mitchell,C., and Krishnamoorti, R.. Dispersion of Single-Walled Carbon Nanotubes in Poly(E-caprolactone). United States: N. p., 2007. Web. doi:10.1021/ma0616054.
Mitchell,C., & Krishnamoorti, R.. Dispersion of Single-Walled Carbon Nanotubes in Poly(E-caprolactone). United States. doi:10.1021/ma0616054.
Mitchell,C., and Krishnamoorti, R.. Mon . "Dispersion of Single-Walled Carbon Nanotubes in Poly(E-caprolactone)". United States. doi:10.1021/ma0616054.
@article{osti_930363,
title = {Dispersion of Single-Walled Carbon Nanotubes in Poly(E-caprolactone)},
author = {Mitchell,C. and Krishnamoorti, R.},
abstractNote = {The dispersion of single-walled carbon nanotubes (SWNT) in poly({var_epsilon}-caprolactone) with the aid of a zwitterionic surfactant is reported. Melt rheology and electrical conductivity measurements indicate geometrical percolation and electrical percolation for nanocomposites with {approx}0.08 wt % SWNT, implying an effective anisotropy for the nanotubes of at least 600. Spectroscopic measurements and comparison of dispersion using other surfactants established that the excellent dispersion is a result of the compatibilizing effect of the zwitterionic surfactant.},
doi = {10.1021/ma0616054},
journal = {Macromolecules},
number = ,
volume = 40,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide amore » microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer.« less
  • A novel approach is presented to improve the dispersion of oxidized single-walled carbon nanotubes (SWNTs) in a copolymer matrix by tuning hydrogen-bonding interactions to enhance dispersion. Nanocomposites of single-walled carbon nanotubes and copolymers of styrene and vinyl phenol (PSVPh) with varying vinyl phenol content were produced and examined. The dispersion of the SWNT in the polymer matrix is quantified by optical microscopy and Raman spectroscopy. Raman spectroscopy is also used to investigate preferred interactions between the SWNTs and the copolymers via the shift in the D* Raman band of the SWNTs in the composites. All composites show regions of SWNTmore » aggregates; however, the aggregate size varies with composition of the PSVPh copolymer and the amount of SWNT oxidation. Optimal dispersion of the SWNT is observed in PSVPh with 20% vinyl phenol and oxidized nanotubes, which correlates with spectroscopic evidence that indicates that this system also incorporates the most interactions between SWNT and polymer matrix. These results are in agreement with previous studies that indicate that optimizing the extent of specific interactions between a polymer matrix and nanoscale filler enables the efficient dispersion of the nanofillers.« less
  • In this study we investigate the formation of non-covalent electron donor acceptor (EDA) interactions between polymers and single-walled carbon nanotubes (SWNTs) with the goal of optimizing interfacial adhesion and homogeneity of nanocomposites without modifying the SWNT native surface. Nanocomposites of SWNTs and three sets of polymer matrices with varying composition of electron donating 2-(dimethylamino)ethyl methacrylate (DMAEMA) or electron accepting acrylonitrile (AN) and cyanostyrene (CNSt) were prepared, quantitatively characterized by optical microscopy and Raman spectroscopy (Raman mapping, Raman D* peak shifts) and qualitatively compared through thick film composite visualization. The experimental data show that copolymers with 30 mol% DMAEMA, 45 mol%more » AN, 23 mol% CNSt and polyacrylonitrile homopolymer have the highest extent of intermolecular interaction, which translates to an optimum SWNT spatial dispersion among the series. These results are found to correlate very well with the intermolecular interaction energies obtained from quantum density functional theory calculations. Both experimental and computational results also illustrate that chain connectivity is critical in controlling the accessibility of the functional groups to form intermolecular interactions. This means that an adequate distance between interacting functional groups on a polymer chain is needed in order to allow efficient intermolecular contact. Thus, controlling the amount of electron donating or withdrawing moieties throughout the polymer chain will direct the extent of EDA interaction, which enables tuning the SWNT dispersion.« less
  • In this study we investigate the formation of non-covalent electron donor acceptor (EDA) interactions between polymers and single-walled carbon nanotubes (SWNTs) with the goal of optimizing interfacial adhesion and homogeneity of nanocomposites without modifying the SWNT native surface. Nanocomposites of SWNTs and three sets of polymer matrices with varying composition of electron donating 2-(dimethylamino)ethyl methacrylate (DMAEMA) or electron accepting acrylonitrile (AN) and cyanostyrene (CNSt) were prepared, quantitatively characterized by optical microscopy and Raman spectroscopy (Raman mapping, Raman D* peak shifts) and qualitatively compared through thick film composite visualization. The experimental data show that copolymers with 30 mol% DMAEMA, 45 mol%more » AN, 23 mol% CNSt and polyacrylonitrile homopolymer have the highest extent of intermolecular interaction, which translates to an optimum SWNT spatial dispersion among the series. These results are found to correlate very well with the intermolecular interaction energies obtained from quantum density functional theory calculations. Both experimental and computational results also illustrate that chain connectivity is critical in controlling the accessibility of the functional groups to form intermolecular interactions. This means that an adequate distance between interacting functional groups on a polymer chain is needed in order to allow efficient intermolecular contact. Thus, controlling the amount of electron donating or withdrawing moieties throughout the polymer chain will direct the extent of EDA interaction, which enables tuning the SWNT dispersion.« less