skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solution-Based Processing of the Phase-Change Material KSb5S8

Abstract

A hydrazine-based process for solution-depositing phase-change materials (PCMs) is demonstrated, using KSb{sub 5}S{sub 8} (KSS) as an example. The process involves dissolving the elemental metals and chalcogen in hydrazine at room temperature and spin-coating the solution onto a substrate, followed by a short low-temperature (T {<=} 250 C) anneal. The spin-coated KSS films, which range in thickness from 10 to 90 nm, are examined using variable temperature X-ray diffraction, medium energy ion scattering (MEIS), Rutherford backscattering spectroscopy (RBS), and scanning electron microscopy (SEM). The spin-coated KSS films exhibit a reversible amorphous-crystalline transition with a relatively high crystallization temperature ({approx}280 C). Selected other chalcogenide-based PCMs are also expected to be suitable for thin-film deposition using this approach.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Org.:
Doe - Office Of Science
OSTI Identifier:
930173
Report Number(s):
BNL-80834-2008-JA
Journal ID: ISSN 0897-4756; CMATEX; TRN: US200822%%1219
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Journal Article
Resource Relation:
Journal Name: Chemistry of Materials; Journal Volume: 18
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; PHASE CHANGE MATERIALS; POTASSIUM SULFIDES; ANTIMONY SULFIDES; SPIN-ON COATING; ANNEALING; THIN FILMS; PHASE TRANSFORMATIONS; national synchrotron light source

Citation Formats

Mitzi,D., Raoux, S., Schrott, A., Copel, M., Kellock, A., and Jordan-Sweet, J.. Solution-Based Processing of the Phase-Change Material KSb5S8. United States: N. p., 2006. Web. doi:10.1021/cm0619510.
Mitzi,D., Raoux, S., Schrott, A., Copel, M., Kellock, A., & Jordan-Sweet, J.. Solution-Based Processing of the Phase-Change Material KSb5S8. United States. doi:10.1021/cm0619510.
Mitzi,D., Raoux, S., Schrott, A., Copel, M., Kellock, A., and Jordan-Sweet, J.. Sun . "Solution-Based Processing of the Phase-Change Material KSb5S8". United States. doi:10.1021/cm0619510.
@article{osti_930173,
title = {Solution-Based Processing of the Phase-Change Material KSb5S8},
author = {Mitzi,D. and Raoux, S. and Schrott, A. and Copel, M. and Kellock, A. and Jordan-Sweet, J.},
abstractNote = {A hydrazine-based process for solution-depositing phase-change materials (PCMs) is demonstrated, using KSb{sub 5}S{sub 8} (KSS) as an example. The process involves dissolving the elemental metals and chalcogen in hydrazine at room temperature and spin-coating the solution onto a substrate, followed by a short low-temperature (T {<=} 250 C) anneal. The spin-coated KSS films, which range in thickness from 10 to 90 nm, are examined using variable temperature X-ray diffraction, medium energy ion scattering (MEIS), Rutherford backscattering spectroscopy (RBS), and scanning electron microscopy (SEM). The spin-coated KSS films exhibit a reversible amorphous-crystalline transition with a relatively high crystallization temperature ({approx}280 C). Selected other chalcogenide-based PCMs are also expected to be suitable for thin-film deposition using this approach.},
doi = {10.1021/cm0619510},
journal = {Chemistry of Materials},
number = ,
volume = 18,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • An enthalpy method is employed to solve transport processes associated with melting of an unfixed rectangular phase change material (PCM) in a low-gravitational environment. This method permits the phase-change problems to be solved within fixed numerical grids, hence eliminating the need for coordinate transformation. The PCM, initially at its melting temperature, is placed inside a rectangular enclosure. The lower surface of the container is then exposed to a uniform temperature higher than the PCM melting temperature. The difference in densities of solid and liquid causes a force imbalance on the solid phase exceeds that of the liquid, the solid continuallymore » moves downward as melting progresses and hence generates a flow field within the liquid. The problem is formulated as a one-domain problem with the possibility of melting from all the PCM surfaces, and no approximation is made about the liquid film thickness under the melt. The governing equations are discretized by using a control-volume-based finite difference scheme with a new iterative method to correct for the downward solid-phase velocity. This will also speed up the convergence of the numerical procedure. The results are presented in the form of a parametric study of the effects of Archimedes number, Stefan number, Prandtl number, and the geometric parameters on the melt thickness, the downward solid velocity, the elevation of the top surface, and the volume of the solid PCM. They show that in a low-gravitational environment, the melting rate is very slow.« less
  • A new integrated collector storage (ICS) concept for low-temperature solar heating of water is described. The solar energy is stored in a salt-hydrate phase-change material (PCM) held in the collector and is discharged to cold water flowing through a surface heat exchanger located in a layer of stationary heat transfer liquid (SHTL), floating over an immiscible layer of PCM. A theoretical model for the charging process of the proposed integrated collector is presented. The model assumes one-dimensional transient heat conduction in the PCM and SHTL layers and neglects the effect of convection heat transfer in these regions. The model wasmore » solved numerically by an enthalpy-based finite differences method and validated against experimental data. The results of parametric studies on the effect of the transition temperature and of the thickness layer of the salt-hydrate PCM on the thermal performance of the charging process are also presented. 17 refs., 8 figs., 2 tabs.« less
  • Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe) 1-x(Sb 2Te 3) x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge 4SbTe 5, a single phase compound just off of the (GeTe) 1-x(Sb 2Te 3) xmore » tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge 4SbTe 5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less
  • Chalcogenide films with reversible amorphous-crystalline phase transitions have been commercialized as optically rewritable data-storage media, and intensive effort is now focused on integrating them into electrically addressed non-volatile memory devices (phase-change random-access memory or PCRAM). Although optical data storage is accomplished by laser-induced heating of continuous films, electronic memory requires integration of discrete nanoscale phase-change material features with read/write electronics. Currently, phase-change films are most commonly deposited by sputter deposition, and patterned by conventional lithography. Metal chalcogenide films for transistor applications have recently been deposited by a low-temperature, solution-phase route. Here, we extend this methodology to prepare thin films andmore » nanostructures of GeSbSe phase-change materials. We report the ready tuneability of phase-change properties in GeSbSe films through composition variation achieved by combining novel precursors in solution. Rapid, submicrosecond phase switching is observed by laser-pulse annealing. We also demonstrate that prepatterned holes can be filled to fabricate phase-change nanostructures from hundreds down to tens of nanometres in size, offering enhanced flexibility in fabricating PCRAM devices with reduced current requirements.« less
  • An electron beam (EB) lithography method using inedible cellulose-based resist material derived from woody biomass has been successfully developed. This method allows the use of pure water in the development process instead of the conventionally used tetramethylammonium hydroxide and anisole. The inedible cellulose-based biomass resist material, as an alternative to alpha-linked disaccharides in sugar derivatives that compete with food supplies, was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB-sensitive 2-methacryloyloxyethyl groups. A 75 nm line and space pattern at an exposure dose of 19 μC/cm{sup 2}, a resist thickness uniformity of less than 0.4 nm onmore » a 200 mm wafer, and low film thickness shrinkage under EB irradiation were achieved with this inedible cellulose-based biomass resist material using a water-based development process.« less