skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction

Abstract

Microfine rock aggregates, formed naturally or in a crushing process, pass a No. 200 ASTM sieve, so have at least two orthogonal principal dimensions less than 75 {mu}m, the sieve opening size. In this paper, for the first time, we capture true 3-D shape and size data of several different types of microfine aggregates, using X-ray microcomputed tomography ({mu}CT) with a voxel size of 2 {mu}m. This information is used to generate shape analyses of various kinds. Particle size distributions are also generated from the {mu}CT data and quantitatively compared to the results of laser diffraction, which is the leading method for measuring particle size distributions of sub-millimeter size particles. By taking into account the actual particle shape, the differences between {mu}CT and laser diffraction can be qualitatively explained.

Authors:
; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Org.:
Doe - Office Of Science
OSTI Identifier:
930020
Report Number(s):
BNL-80634-2008-JA
TRN: US200822%%961
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Journal Article
Resource Relation:
Journal Name: Powder Technology; Journal Volume: 177; Journal Issue: 2
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DIFFRACTION; LASER RADIATION; PARTICLE SIZE; PARTICLES; ROCKS; SHAPE; SIZE; TOMOGRAPHY; X RADIATION; national synchrotron light source

Citation Formats

Erdogan,S., Garboczi, E., and Fowler, D. Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction. United States: N. p., 2007. Web. doi:10.1016/j.powtec.2007.02.016.
Erdogan,S., Garboczi, E., & Fowler, D. Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction. United States. doi:10.1016/j.powtec.2007.02.016.
Erdogan,S., Garboczi, E., and Fowler, D. Mon . "Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction". United States. doi:10.1016/j.powtec.2007.02.016.
@article{osti_930020,
title = {Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction},
author = {Erdogan,S. and Garboczi, E. and Fowler, D.},
abstractNote = {Microfine rock aggregates, formed naturally or in a crushing process, pass a No. 200 ASTM sieve, so have at least two orthogonal principal dimensions less than 75 {mu}m, the sieve opening size. In this paper, for the first time, we capture true 3-D shape and size data of several different types of microfine aggregates, using X-ray microcomputed tomography ({mu}CT) with a voxel size of 2 {mu}m. This information is used to generate shape analyses of various kinds. Particle size distributions are also generated from the {mu}CT data and quantitatively compared to the results of laser diffraction, which is the leading method for measuring particle size distributions of sub-millimeter size particles. By taking into account the actual particle shape, the differences between {mu}CT and laser diffraction can be qualitatively explained.},
doi = {10.1016/j.powtec.2007.02.016},
journal = {Powder Technology},
number = 2,
volume = 177,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • Assessment of bone tissue mineral density (TMD) may provide information critical to the understanding of mineralization processes and bone biomechanics. High-resolution three-dimensional assessment of TMD has recently been demonstrated using synchrotron radiation microcomputed tomography (SR{mu}CT); however, this imaging modality is relatively inaccessible due to the scarcity of SR facilities. Conventional desktop {mu}CT systems are widely available and have been used extensively to assess bone microarchitecture. However, the polychromatic source and cone-shaped beam geometry complicate assessment of TMD by conventional {mu}CT. The goal of this study was to evaluate {mu}CT-based measurement of degree and distribution of tissue mineralization in a quantitative,more » spatially resolved manner. Specifically, {mu}CT measures of bone mineral content (BMC) and TMD were compared to those obtained by SR{mu}CT and gravimetric methods. Cylinders of trabecular bone were machined from human femoral heads (n=5), vertebrae (n=5), and proximal tibiae (n=4). Cylinders were imaged in saline on a polychromatic {mu}CT system at an isotropic voxel size of 8 {mu}m. Volumes were reconstructed using beam hardening correction algorithms based on hydroxyapatite (HA)-resin wedge phantoms of 200 and 1200 mgHA/cm3. SR{mu}CT imaging was performed at an isotropic voxel size of 7.50 {mu}m at the National Synchrotron Light Source. Attenuation values were converted to HA concentration using a linear regression derived by imaging a calibration phantom. Architecture and mineralization parameters were calculated from the image data. Specimens were processed using gravimetric methods to determine ash mass and density. {mu}CT-based BMC values were not affected by altering the beam hardening correction. Volume-averaged TMD values calculated by the two corrections were significantly different (p=0.008) in high volume fraction specimens only, with the 1200 mgHA/cm3 correction resulting in a 4.7% higher TMD value. {mu}CT and SR{mu}CT provided significantly different measurements of both BMC and TMD (p<0.05). In high volume fraction specimens, {mu}CT with 1200 mgHA/cm3 correction resulted in BMC and TMD values 16.7% and 15.0% lower, respectively, than SR{mu}CT values. In low volume fraction specimens, {mu}CT with 1200 mgHA/cm3 correction resulted in BMC and TMD values 12.8% and 12.9% lower, respectively, than SR{mu}CT values. {mu}CT and SR{mu}CT values were well-correlated when volume fraction groups were considered individually (BMC R2=0.97-1.00; TMD R2=0.78-0.99). Ash mass and density were higher than the SR{mu}CT equivalents by 8.6% in high volume fraction specimens and 10.9% in low volume fraction specimens (p<0.05). BMC values calculated by tomography were highly correlated with ash mass (ash versus {mu}CT R2=0.96-1.00; ash versus SR{mu}CT R2=0.99-1.00). TMD values calculated by tomography were moderately correlated with ash density (ash versus {mu}CT R2=0.64-0.72; ash versus SR{mu}CT R2=0.64). Spatially resolved comparisons highlighted substantial geometric nonuniformity in the {mu}CT data, which were reduced (but not eliminated) using the 1200 mg HA/cm3 beam hardening correction, and did not exist in the SR{mu}CT data. This study represents the first quantitative comparison of {mu}CT mineralization evaluation against SR{mu}CT and gravimetry. Our results indicate that {mu}CT mineralization measures are underestimated but well-correlated with SR{mu}CT and gravimetric data, particularly when volume fraction groups are considered individually.« less
  • The dilation x-ray imager (DIXI) is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10× improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method to improve the robustness of the DIXI data analysis. Furthermore, we present results on ignition-relevant experiments atmore » the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P 0, P 2 and P 4 Legendre modes, and their temporal evolution/swings).« less
  • Eight different portland cements were imaged on a synchrotron beam line at Brookhaven National Laboratory using X-ray microcomputed tomography at a voxel size of about 1 mum per cubic voxel edge. The particles ranged in size roughly between 10 mum and 100 mum. The shape and size of individual particles were computationally analyzed using spherical harmonic analysis. The particle shape difference between cements was small but significant, as judged by several different quantitative shape measures, including the particle length, width, and thickness distributions. It was found that the average shape of cement particles was closely correlated with the volume fractionmore » of C{sub 3}S (alite) and C{sub 2}S (belite) making up the cement powder. It is shown that the non-spherical particle shape of the cements strongly influence laser diffraction results, at least in the sieve size range of 20 mum to 38 mum. Since laser diffraction particle size measurement is being increasingly used by the cement industry, while cement chemistry is always a main factor in cement production, these results could have important implications for how this kind of particle size measurement should be understood and used in the cement industry.« less