skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Expression, Purification, Crystallization of Two Major Envelope Proteins from White Spot Syndrome Virus

Abstract

White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapor-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 {angstrom} resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 {angstrom}. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 {angstrom}, and diffracts to 2.0 {angstrom} resolution.

Authors:
;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Org.:
Doe - Office Of Science
OSTI Identifier:
930005
Report Number(s):
BNL-80618-2008-JA
TRN: US200822%%1158
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Journal Article
Resource Relation:
Journal Name: Acta Crystallographica Section F: Structural Biology and Crystallization Communications; Journal Volume: 63
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; AMINO ACIDS; CALCIUM; CITRIC ACID; CRUSTACEANS; CRYSTALLIZATION; CRYSTALS; ESCHERICHIA COLI; PATHOGENS; POLYETHYLENE GLYCOLS; PROTEINS; PURIFICATION; RESOLUTION; SHRIMP; SODIUM CHLORIDES; SPACE GROUPS; VIRUSES; national synchrotron light source

Citation Formats

Tang,X., and Hew, C.. Expression, Purification, Crystallization of Two Major Envelope Proteins from White Spot Syndrome Virus. United States: N. p., 2007. Web. doi:10.1107/S1744309107029351.
Tang,X., & Hew, C.. Expression, Purification, Crystallization of Two Major Envelope Proteins from White Spot Syndrome Virus. United States. doi:10.1107/S1744309107029351.
Tang,X., and Hew, C.. Mon . "Expression, Purification, Crystallization of Two Major Envelope Proteins from White Spot Syndrome Virus". United States. doi:10.1107/S1744309107029351.
@article{osti_930005,
title = {Expression, Purification, Crystallization of Two Major Envelope Proteins from White Spot Syndrome Virus},
author = {Tang,X. and Hew, C.},
abstractNote = {White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapor-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 {angstrom} resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 {angstrom}. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 {angstrom}, and diffracts to 2.0 {angstrom} resolution.},
doi = {10.1107/S1744309107029351},
journal = {Acta Crystallographica Section F: Structural Biology and Crystallization Communications},
number = ,
volume = 63,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals ofmore » SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.« less
  • White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 {angstrom}, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelopemore » proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt {beta}-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core {beta}-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.« less
  • The nonstructural protein VP9 from white spot syndrome virus (WSSV) has been identified and expressed in Escherichia coli. To facilitate purification, a cleavable His{sub 6} tag was introduced at the N-terminus. The native protein was purified and crystallized by vapor diffusion against mother liquor containing 2 M sodium acetate, 100 mM MES pH 6.3, 25 mM cadmium sulfate and 3% glycerol. Crystals were obtained within 7 d and diffracted to 2.2 Angstroms; they belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 74.13, b = 78.21, c = 78.98 Angstroms and four molecules in the asymmetricmore » unit. The selenomethionine-labeled protein produced isomorphous crystals that diffracted to approximately 3.3 Angstroms.« less
  • The nonstructural protein VP9 from white spot syndrome virus (WSSV) has been identified and expressed in Escherichia coli. Native protein was purified and crystallized by vapour diffusion. The nonstructural protein VP9 from white spot syndrome virus (WSSV) has been identified and expressed in Escherichia coli. To facilitate purification, a cleavable His{sub 6} tag was introduced at the N-terminus. The native protein was purified and crystallized by vapour diffusion against mother liquor containing 2 M sodium acetate, 100 mM MES pH 6.3, 25 mM cadmium sulfate and 3% glycerol. Crystals were obtained within 7 d and diffracted to 2.2 Å; theymore » belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 74.13, b = 78.21, c = 78.98 Å and four molecules in the asymmetric unit. The selenomethionine-labelled protein produced isomorphous crystals that diffracted to approximately 3.3 Å.« less
  • White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope ofmore » the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV.« less