skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In-situ Studies of the Martensitic Transformation in Ti Thin Films using the Dynamic Transmission Microscope (DTEM)

Abstract

The {alpha} to {beta} transition in pure Ti occurs mainly by a 'martensitic type' phase transformation. In such transformations, growth rates and interface velocities tend to be very large, on the order of 10{sup 3} m/s, making it difficult to observe the transformation experimentally. With thin films, it becomes even more difficult to observe, since the large surface augments the nucleation and transformation rates to levels that require nanosecond temporal resolution for experimental observations. The elucidation of the transformational mechanisms in these materials yearns for an apparatus that has both high spatial and temporal resolution. We have constructed such an instrument at LLNL (the dynamical transmission electron microscope or DTEM) that combines pulsed lasers systems and optical pump-probe techniques with a conventional TEM. We have used the DTEM to observe the transient events of the {alpha}-{beta} transformation in nanocrystalline Ti films via single shot diffraction patterns with 1.5 ns resolution. With pulsed, nanosecond laser irradiation (pump laser), the films were heated at an extreme rate of 10{sup 10} K/s. was observed At 500 ns after the initial pump laser hit, the HCP, alpha phase was almost completely transformed to the BCC, beta phase. Post-mortem investigations of the laser treated filmsmore » revealed that substantial grain growth occurred and lath microstructure, containing no apparent dislocations. The lack of dislocations may indicate that the {alpha} to {beta} transformation may also proceed by a 'massive' type mechanism (short range diffusion).« less

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
928203
Report Number(s):
UCRL-PROC-217255
TRN: US200815%%778
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Conference
Resource Relation:
Conference: Presented at: Materials Research Society Fall Meeting 2005, Boston, MA, United States, Nov 28 - Dec 02, 2005
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; DIFFRACTION; DIFFUSION; DISLOCATIONS; ELECTRON MICROSCOPES; GRAIN GROWTH; IRRADIATION; LASERS; LAWRENCE LIVERMORE NATIONAL LABORATORY; MICROSCOPES; MICROSTRUCTURE; NUCLEATION; PHASE TRANSFORMATIONS; RESOLUTION; THIN FILMS; TRANSFORMATIONS; TRANSIENTS

Citation Formats

LaGrange, T B, Campbell, G H, Colvin, J D, King, W E, Browning, N D, Armstrong, M R, Reed, B W, Kim, J S, and Stuart, B C. In-situ Studies of the Martensitic Transformation in Ti Thin Films using the Dynamic Transmission Microscope (DTEM). United States: N. p., 2005. Web.
LaGrange, T B, Campbell, G H, Colvin, J D, King, W E, Browning, N D, Armstrong, M R, Reed, B W, Kim, J S, & Stuart, B C. In-situ Studies of the Martensitic Transformation in Ti Thin Films using the Dynamic Transmission Microscope (DTEM). United States.
LaGrange, T B, Campbell, G H, Colvin, J D, King, W E, Browning, N D, Armstrong, M R, Reed, B W, Kim, J S, and Stuart, B C. Mon . "In-situ Studies of the Martensitic Transformation in Ti Thin Films using the Dynamic Transmission Microscope (DTEM)". United States. doi:. https://www.osti.gov/servlets/purl/928203.
@article{osti_928203,
title = {In-situ Studies of the Martensitic Transformation in Ti Thin Films using the Dynamic Transmission Microscope (DTEM)},
author = {LaGrange, T B and Campbell, G H and Colvin, J D and King, W E and Browning, N D and Armstrong, M R and Reed, B W and Kim, J S and Stuart, B C},
abstractNote = {The {alpha} to {beta} transition in pure Ti occurs mainly by a 'martensitic type' phase transformation. In such transformations, growth rates and interface velocities tend to be very large, on the order of 10{sup 3} m/s, making it difficult to observe the transformation experimentally. With thin films, it becomes even more difficult to observe, since the large surface augments the nucleation and transformation rates to levels that require nanosecond temporal resolution for experimental observations. The elucidation of the transformational mechanisms in these materials yearns for an apparatus that has both high spatial and temporal resolution. We have constructed such an instrument at LLNL (the dynamical transmission electron microscope or DTEM) that combines pulsed lasers systems and optical pump-probe techniques with a conventional TEM. We have used the DTEM to observe the transient events of the {alpha}-{beta} transformation in nanocrystalline Ti films via single shot diffraction patterns with 1.5 ns resolution. With pulsed, nanosecond laser irradiation (pump laser), the films were heated at an extreme rate of 10{sup 10} K/s. was observed At 500 ns after the initial pump laser hit, the HCP, alpha phase was almost completely transformed to the BCC, beta phase. Post-mortem investigations of the laser treated films revealed that substantial grain growth occurred and lath microstructure, containing no apparent dislocations. The lack of dislocations may indicate that the {alpha} to {beta} transformation may also proceed by a 'massive' type mechanism (short range diffusion).},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Nov 21 00:00:00 EST 2005},
month = {Mon Nov 21 00:00:00 EST 2005}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The transient events of the {alpha}-{beta} martensitic transformation in nanocrystalline Ti films were explored via single shot electron diffraction patterns with 1.5 ns temporal resolution. The diffraction patterns were acquired with a newly constructed dynamic transmission electron microscope (DTEM), which combines nanosecond pulsed laser systems and pump-probe techniques with a conventional TEM. With the DTEM, the transient events of fundamental material processes, that are far too fast to be studied by conventional bulk techniques, can be captured in the form of electron diffraction patterns or images with nanosecond temporal resolution. The transient phenomena of the martensitic transformations in nanocrystalline Timore » is ideally suited for study in the DTEM, with their rapid nucleation, characteristic interface velocities {approx}1 km/s, and significant irreversible microstructural changes. Free-standing 40-nm-thick Ti films were laser-heated at a rate of {approx}10{sup 10} K/s to a temperature above the 1155 K transition point, then probed at various time intervals with a 1.5-ns-long, intense electron pulse. Diffraction patterns show an almost complete transition to the {beta} phase within 500 ns. Postmortem analysis (after the sample is allowed to cool) shows a reversion to the {alpha} phase coupled with substantial grain growth, lath formation, and texture modification. The cooled material also shows a complete lack of apparent dislocations, suggesting the possible importance of a ''massive'' short-range diffusion transformation mechanism.« less
  • The crystallization processes of the as-deposited, amorphous NiTi thin films have been studied in detail using techniques such as differential scanning calorimetry and, in-situ TEM. The kinetic data have been analyzed in terms of Johnson-Mehl-Avrami-Kolomogrov (JMAK) semi-empirical formula. The kinetic parameters determined from this analysis have been useful in defining process control parameters for tailoring microstructural features and shape memory properties. Due to the commercial push to shrink thin film-based devices, unique processing techniques have been developed using laser-based annealing to spatially control the microstructure evolution down to sub-micron levels. Nanosecond, pulse laser annealing is particularly attractive since it limitsmore » the amount of peripheral heating and unwanted microstructural changes to underlying or surrounding material. However, crystallization under pulsed laser irradiation can differ significantly from conventional thermal annealing, e.g., slow heating in a furnace. This is especially true for amorphous NiTi materials and relevant for shape memory thin film based microelectromechanical systems (MEMS) applications. There is little to no data on the crystallization kinetics of NiTi under pulsed laser irradiation, primarily due to the high crystallization rates intrinsic to high temperature annealing and the spatial and temporal resolution limits of standard techniques. However, with the high time and spatial resolution capabilities of the dynamic transmission electron microscope (DTEM) constructed at Lawrence Livermore National Laboratory, the rapid nucleation events occurring from pulsed laser irradiation can be directly observed and nucleation rates can be quantified. This paper briefly explains the DTEM approach and how it used to investigate the pulsed laser induced crystallization processes in NiTi and to determine kinetic parameters.« less
  • Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated priormore » to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.« less
  • Previous work on an equiatomic alloy of nickel and titanium (nitinol) indicates that the martensitic transformation in thin films may be suppressed by interfacial constraint imposed by the substrate. Ni{sub 50}Ti{sub 50} films were deposited at room temperature on oxidized (100) Si substrates and tested to determine when the martensitic transformation occurred for both attached and free-standing conditions.