skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Identification of genes directly regulated by the oncogene ZNF217using ChIP-chip assays.

Abstract

It has been proposed that ZNF217, which is amplified at 20q13 in various tumors, plays a key role during neoplastic transformation. ZNF217 has been purified in complexes that contain repressor proteins such as CtBP2, suggesting that it acts as a transcriptional repressor. However, the function of ZNF217 has not been well characterized due to a lack of known target genes. Using a global chromatin immunoprecipitation (ChIP)-chip approach, we identified thousands of ZNF217 binding sites in three tumor cell lines (MCF7, SW480, and Ntera2). Further analysis of ZNF217 in Ntera2 cells showed that many promoters are bound by ZNF217 and CtBP2 and that a subset of these promoters are activated upon removal of ZNF217. Thus, our in vivo studies corroborate the in vitro biochemical analyses of ZNF217-containing complexes and support the hypothesis that ZNF217 functions as a transcriptional repressor. Gene ontology analysis showed that ZNF217 targets in Ntera2 cells are involved in organ development, suggesting that one function of ZNF217 may be to repress differentiation. Accordingly we show that differentiation of Ntera2 cells with retinoic acid led to down-regulation of ZNF217. Our identification of thousands of ZNF217 target genes will enable further studies of the consequences of aberrant expression of ZNF217more » during neoplastic transformation.« less

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
COLLABORATION - UCDavis
Sponsoring Org.:
USDOE
OSTI Identifier:
928017
Report Number(s):
LBNL-62763
R&D Project: L0246J; BnR: 400409900; TRN: US200816%%984
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: The Journal of Biological Chemistry; Journal Volume: 282; Journal Issue: 13; Related Information: Journal Publication Date: 03/30/2007
Country of Publication:
United States
Language:
English
Subject:
59; CHROMATIN; GENES; HYPOTHESIS; IN VITRO; IN VIVO; NEOPLASMS; ONCOGENES; ORGANS; PROMOTERS; PROTEINS; REMOVAL; RETINOIC ACID; TARGETS; TUMOR CELLS

Citation Formats

Krig, S.R., Jin, V.X., Bieda, M.C., O'geen, H., Yaswen, P., Green, R., and Farnham, P.J. Identification of genes directly regulated by the oncogene ZNF217using ChIP-chip assays.. United States: N. p., 2007. Web. doi:10.1074/jbc.M611752200.
Krig, S.R., Jin, V.X., Bieda, M.C., O'geen, H., Yaswen, P., Green, R., & Farnham, P.J. Identification of genes directly regulated by the oncogene ZNF217using ChIP-chip assays.. United States. doi:10.1074/jbc.M611752200.
Krig, S.R., Jin, V.X., Bieda, M.C., O'geen, H., Yaswen, P., Green, R., and Farnham, P.J. Fri . "Identification of genes directly regulated by the oncogene ZNF217using ChIP-chip assays.". United States. doi:10.1074/jbc.M611752200.
@article{osti_928017,
title = {Identification of genes directly regulated by the oncogene ZNF217using ChIP-chip assays.},
author = {Krig, S.R. and Jin, V.X. and Bieda, M.C. and O'geen, H. and Yaswen, P. and Green, R. and Farnham, P.J.},
abstractNote = {It has been proposed that ZNF217, which is amplified at 20q13 in various tumors, plays a key role during neoplastic transformation. ZNF217 has been purified in complexes that contain repressor proteins such as CtBP2, suggesting that it acts as a transcriptional repressor. However, the function of ZNF217 has not been well characterized due to a lack of known target genes. Using a global chromatin immunoprecipitation (ChIP)-chip approach, we identified thousands of ZNF217 binding sites in three tumor cell lines (MCF7, SW480, and Ntera2). Further analysis of ZNF217 in Ntera2 cells showed that many promoters are bound by ZNF217 and CtBP2 and that a subset of these promoters are activated upon removal of ZNF217. Thus, our in vivo studies corroborate the in vitro biochemical analyses of ZNF217-containing complexes and support the hypothesis that ZNF217 functions as a transcriptional repressor. Gene ontology analysis showed that ZNF217 targets in Ntera2 cells are involved in organ development, suggesting that one function of ZNF217 may be to repress differentiation. Accordingly we show that differentiation of Ntera2 cells with retinoic acid led to down-regulation of ZNF217. Our identification of thousands of ZNF217 target genes will enable further studies of the consequences of aberrant expression of ZNF217 during neoplastic transformation.},
doi = {10.1074/jbc.M611752200},
journal = {The Journal of Biological Chemistry},
number = 13,
volume = 282,
place = {United States},
year = {Fri Jan 26 00:00:00 EST 2007},
month = {Fri Jan 26 00:00:00 EST 2007}
}
  • PPAR{gamma} (peroxisome proliferator-activated receptor gamma) acts as a key molecule of adipocyte differentiation, and transactivates multiple target genes involved in lipid metabolic pathways. Identification of PPAR{gamma} target genes will facilitate to predict the extent to which the drugs can affect and also to understand the molecular basis of lipid metabolism. Here, we have identified five target genes regulated directly by PPAR{gamma} during adipocyte differentiation in 3T3-L1 cells using integrated analyses of ChIP-on-chip and expression microarray. We have confirmed the direct PPAR{gamma} regulation of five genes by luciferase reporter assay in NIH-3T3 cells. Of these five genes Hp, Tmem143 and 1100001G20Rikmore » are novel PPAR{gamma} targets. We have also detected PPREs (PPAR response elements) sequences in the promoter region of the five genes computationally. Unexpectedly, most of the PPREs detected proved to be atypical, suggesting the existence of more atypical PPREs than previously thought in the promoter region of PPAR{gamma} regulated genes.« less
  • A method based on the transcriptional activation of a selectable reporter in yeast cells was used to identify genes regulated by the Utrabithorax homeoproteins in Drosophila melanogaster. Fifty-three DNA fragments that can mediate activation by UBX isoform Ia in this test were recovered after screening 15% of the Drosophila genome. Half of these fragments represent single-copy sequences in the genome. Six single-copy fragments were investigated in detail, and each was found to reside near a transcription unit whose expression in the embryo is segmentally modulated as expected for targets of homeotic genes. Four of these putative target genes are expressedmore » in patterns that suggest roles in the development of regional specializations within mesoderm derivatives; in three cases these expression patterns depend on Ultrabithorax function. Extrapolation from this pilot study indicates that 85-170 candidate target genes can be identified by screening the entire Drosophila genome with UBX isoform Ia. With appropriate modifications, this approach should be applicable to other transcriptional regulators in diverse organisms. 69 refs., 9 figs., 2 tabs.« less
  • Purpose : Previous work from the authors' group and others has demonstrated that some of the effects of UV irradiation on gene expression are modulated in response to the addition of salicylic acid to irradiated cells. The presumed effector molecule responsible for this modulation is NF-kappaB. In the experiments described here, differential-display RT-PCR was used to identify those cDNAs that are differentially modulated by UV radiation with and without the addition of salicylic acid. Materials and methods : Differential-display RT-PCR was used to identify differentially expressed genes. Results : Eight such cDNAs are presented: lactate dehydrogenase (LDH-beta), nuclear encoded mitochondrialmore » NADH ubiquinone reductase 24kDa (NDUFV2), elongation initiation factor 4B (eIF4B), nuclear dots protein SP100, nuclear encoded mitochondrial ATPase inhibitor (IF1), a cDNA similar to a subunit of yeast CCAAT transcription factor HAP5, and two expressed sequence tags (AA187906 and AA513156). Conclusions : Sequences of four of these genes contained NF-kappaB DNA binding sites of the type that may attract transrepressor p55/p55 NF-kappaB homodimers. Down-regulation of these genes upon UV irradiation may contribute to increased cell survival via suppression of p53 independent apoptosis.« less
  • TCDD exposure of multipotential C3H10T1/2 fibroblasts for 72 h altered the expression of over 1000 genes, including coordinated changes across large functionally similar gene clusters. TCDD coordinately induced 23 cell cycle-related genes similar to epidermal growth factor (EGF)-induced levels but without any affect on the major mitogenic signaling pathway (extracellular signal-regulated kinase, ERK). TCDD treatment also decreased glycolytic and ribosomal clusters. Most of these TCDD-induced changes were attenuated by the presence of EGF or an adipogenic stimulus, each added during the final 24 h. TCDD prevented 10% of EGF-induced gene responses and 40% of adipogenic responses. Over 100 other genesmore » responded to TCDD during adipogenesis. This group of responses included complete suppression of three proliferins and stimulations of several cytokine receptors. Despite these varied secondary effects of TCDD, direct AhR activation measured by integrated AhR-responsive luciferase reporters was similar under quiescent, EGF-stimulated or adipogenic conditions. Only 23 genes were similarly induced by TCDD regardless of conditions and 10 were suppressed. These 23 genes include: 4 genes previously recognized to contain AhR response elements (cytochrome P450 (CYP) 1B1, CYP1A1, NAD(P)H quinone reductase 1 (NQO1), and aldehyde dehydrogenase 3A1); two novel oxidative genes (alcohol dehydrogenase 3 and superoxide dismutase 3); and glypican 1, a plasma membrane proteoglycan that affects cell signaling. Further experiments demonstrated that TCDD maximally induced NQO1, glypican 1 and alcohol dehydrogenase 3 by 6 h. Glypican 1 activates the actions of many growth factors and therefore may contribute to secondary effects on gene expression.« less
  • Highlights: {yields} NDRG1 was knockdown in cervical and ovarian cancer cell lines by shRNA technology. {yields} NDRG1 knockdown resulted in increased cell invasion activities. {yields} Ninety-six common deregulated genes in both cell lines were identified by cDNA microarray. {yields} Eleven common NDRG1-regulated genes might enhance cell invasive activity. {yields} Regulation of invasion by NDRG1 is an indirect and complicated process. -- Abstract: N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line).more » In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.« less