skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intramolecular C-H bond activation and redox isomerization across two-electron mixed valence diiridium cores.

Journal Article · · Organometallics
DOI:https://doi.org/10.1021/om7007748· OSTI ID:927734

Metal-metal cooperativity enables the reaction of carbon-based substrates at diiridium two-electron mixed valence centers. Arylation of Ir{sub 2}{sup 0,II}(tfepma){sub 3}Cl{sub 2} (1) (tfepma = bis[(bistrifluoroethoxy)phosphino]methylamine) with RMgBr (R = C{sub 6}H{sub 5} and C{sub 6}D{sub 5}) is followed by C-H bond activation to furnish the bridging benzyne complex Ir{sub 2}II,II(tfepma){sub 3}({mu}-C{sub 6}H4)(C{sub 6}H{sub 5})H (2), as the kinetic product. At ambient temperature, 2 isomerizes to Ir{sub 2}{sup I,III}(tfepma){sub 3}({mu}-C{sub 6}H4)(C{sub 6}H{sub 5})H (3) (k{sub obs} = 9.57 {+-} 0.10 x 10{sup -5} s{sup -1} at 31.8 C, {Delta}H{sup {+-}} = 21.7 {+-} 0.3 kcal/mol, {Delta}S{sup {+-}} = -7.4 {+-} 0.9 eu), in which the benzyne moiety is conserved and the Ir{sup III} center is ligated by terminal hydride and phenyl groups. The same reaction course is observed for arylation of 1 with C{sub 6}D{sub 5}MgBr to produce 2-d{sub 10} and 3-d{sub 10} accompanied by an inverse isotope effect, k{sub h}/k{sub d} = 0.44 (k{sub obs} = 2.17 {+-} 0.10 x 10{sup -4} s{sup -1} in C{sub 6}D{sub 6} solution at 31.8 C, {Delta}H{sup {+-}} = 24.9 {+-} 0.7 kcal/mol, {Delta}S{sup {+-}} = -6.4 {+-} 2.4 eu). 2 reacts swiftly with hydrogen to provide Ir{sub 2}{sup II,II}(tfepma){sub 3}H{sub 4} as both the syn and anti isomers (4-syn and 4-anti, respectively). The hydrides of 4-syn were directly located by neutron diffraction analysis. X-ray crystallographic examination of 2, 2-d{sub 10}, 3, and 4-syn indicates that cooperative reactivity at the bimetallic diiridium core is facilitated by the ability of the two-electron mixed valence framework to accommodate the oxidation state changes and ligand rearrangements attendant to the reaction of the substrate.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
National Science Foundation (NSF); USDOE Office of Science (SC)
DOE Contract Number:
DE-AC02-06CH11357
OSTI ID:
927734
Report Number(s):
ANL/IPNS/JA-59867; ORGND7; TRN: US200816%%1247
Journal Information:
Organometallics, Vol. 27, Issue 6 ; Mar. 24, 2008; ISSN 0276-7333
Country of Publication:
United States
Language:
ENGLISH