skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Standard Methods of Characterizing Performance of Fan FilterUnits, Version 3.0

Abstract

We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.

Authors:
Publication Date:
Research Org.:
Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US)
Sponsoring Org.:
USDOE. Assistant Secretary for Energy Efficiency andRenewable Energy. Office of Building Technology
OSTI Identifier:
925526
Report Number(s):
LBNL-62118
R&D Project: E12015; BnR: 600305000; TRN: US200807%%408
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
32; ALGORITHMS; BLOWERS; DETECTION; IMPLEMENTATION; PERFORMANCE; PIPELINES; PROCESSING; SHAPE

Citation Formats

Xu, Tengfang. Standard Methods of Characterizing Performance of Fan FilterUnits, Version 3.0. United States: N. p., 2007. Web. doi:10.2172/925526.
Xu, Tengfang. Standard Methods of Characterizing Performance of Fan FilterUnits, Version 3.0. United States. doi:10.2172/925526.
Xu, Tengfang. Mon . "Standard Methods of Characterizing Performance of Fan FilterUnits, Version 3.0". United States. doi:10.2172/925526. https://www.osti.gov/servlets/purl/925526.
@article{osti_925526,
title = {Standard Methods of Characterizing Performance of Fan FilterUnits, Version 3.0},
author = {Xu, Tengfang},
abstractNote = {We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.},
doi = {10.2172/925526},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • The purpose of this document is to describe the standard electronic format for data files that will be sent for entry into the Tank Characterization Database (TCD). There are 2 different file types needed for each data load: Analytical Results; and Sample Descriptions. The first record of each file must be a header record. The content of the first 5 fields is ignored. They were used previously to satisfy historic requirements that are no longer applicable. The sixth field of the header record must contain the Standard Electronic Format (SEF) version ID (SEF3.0). The remaining records will be formatted asmore » specified below. Fields within a record will be separated using the ''|'' symbol. The ''|''symbol must not appear anywhere in the file except when used as a delimiter.« less
  • As the use of computers in critical control systems such as aircraft controls, medical instruments, defense systems, missile controls, and nuclear power plants has increased, concern for the safety of those systems has also grown. Much of this concern has focused on the software component of those computer-based systems. This is primarily due to historical experience with software systems that often exhibit larger numbers of errors than their hardware counterparts and the fact that the consequences of a software error may endanger human life, property, or the environment. A number of different techniques have been used to address the issuemore » of software safety. Some are standard software engineering techniques aimed at reducing the number of faults in a software protect, such as reviews and walkthroughs. Others, including fault tree analysis, are based on identifying and reducing hazards. This report examines the role of one such technique, formal methods, in the development of software for safety critical systems. The use of formal methods to increase the safety of software systems is based on their role in reducing the possibility of software errors that could lead to hazards.« less
  • One function of the Cementitious Barriers Partnership (CBP) is to assess available models of cement degradation and to assemble suitable models into a “Toolbox” that would be made available to members of the partnership, as well as the DOE Complex. To this end, SRNL and Vanderbilt University collaborated to develop an interface using the GoldSim software to the STADIUM @ code developed by SIMCO Technologies, Inc. and LeachXS/ORCHESTRA developed by Energy research Centre of the Netherlands (ECN). Release of Version 3.0 of the CBP Toolbox is planned in the near future. As a part of this release, an increased levelmore » of quality assurance for the partner codes and the GoldSim interface has been developed. This report documents results from evaluation testing of the ability of CBP Toolbox 3.0 to perform simulations of concrete degradation applicable to performance assessment of waste disposal facilities. Simulations of the behavior of Savannah River Saltstone Vault 2 and Vault 1/4 concrete subject to sulfate attack and carbonation over a 500- to 1000-year time period were run using a new and upgraded version of the STADIUM @ code and the version of LeachXS/ORCHESTRA released in Version 2.0 of the CBP Toolbox. Running both codes allowed comparison of results from two models which take very different approaches to simulating cement degradation. In addition, simulations of chloride attack on the two concretes were made using the STADIUM @ code. The evaluation sought to demonstrate that: 1) the codes are capable of running extended realistic simulations in a reasonable amount of time; 2) the codes produce “reasonable” results; the code developers have provided validation test results as part of their code QA documentation; and 3) the two codes produce results that are consistent with one another. Results of the evaluation testing showed that the three criteria listed above were met by the CBP partner codes. Therefore, it is concluded that the codes can be used to support performance assessment. This conclusion takes into account the QA documentation produced for the partner codes and for the CBP Toolbox.« less
  • The purpose of this standard is to prescribe laboratory methods of testing room fan-coil air conditioners to assure uniform performance data for establishing ratings. This standard includes procedures that: (1) describe and specify test instruments and apparatus, (2) describe and specify laboratory test methods and procedures, (3) describe and specify test data to be recorded, (4) describe and specify calculations to be made from test data, (5) define terms used in testing, and (6) specify standard thermodynamic properties.
  • This report describes the tests performed to validate the CRWMS ''Analysis and Logistics Visually Interactive'' Model (CALVIN) Version 3.0 (V3.0) computer code (STN: 10074-3.0-00). To validate the code, a series of test cases was developed in the CALVIN V3.0 Validation Test Plan (CRWMS M&O 1999a) that exercises the principal calculation models and options of CALVIN V3.0. Twenty-five test cases were developed: 18 logistics test cases and 7 cost test cases. These cases test the features of CALVIN in a sequential manner, so that the validation of each test case is used to demonstrate the accuracy of the input to subsequentmore » calculations. Where necessary, the test cases utilize reduced-size data tables to make the hand calculations used to verify the results more tractable, while still adequately testing the code's capabilities. Acceptance criteria, were established for the logistics and cost test cases in the Validation Test Plan (CRWMS M&O 1999a). The Logistics test cases were developed to test the following CALVIN calculation models: Spent nuclear fuel (SNF) and reactivity calculations; Options for altering reactor life; Adjustment of commercial SNF (CSNF) acceptance rates for fiscal year calculations and mid-year acceptance start; Fuel selection, transportation cask loading, and shipping to the Monitored Geologic Repository (MGR); Transportation cask shipping to and storage at an Interim Storage Facility (ISF); Reactor pool allocation options; and Disposal options at the MGR. Two types of cost test cases were developed: cases to validate the detailed transportation costs, and cases to validate the costs associated with the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) and Regional Servicing Contractors (RSCs). For each test case, values calculated using Microsoft Excel 97 worksheets were compared to CALVIN V3.0 scenarios with the same input data and assumptions. All of the test case results compare with the CALVIN V3.0 results within the bounds of the acceptance criteria. Therefore, it is concluded that the CALVIN V3.0 calculation models and options tested in this report are validated.« less