skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy and visual comfort performance of electrochromic windowswith overhangs

Abstract

DOE-2 building energy simulations were conducted to determine if there were practical architectural and control strategy solutions that would enable electrochromic (EC) windows to significantly improve visual comfort without eroding energy-efficiency benefits. EC windows were combined with overhangs since opaque overhangs provide protection from direct sun which EC windows are unable to do alone. The window wall was divided into an upper and lower aperture so that various combinations of overhang position and control strategies could be considered. The overhang was positioned either at the top of the upper window aperture or between the upper and lower apertures. Overhang depth was varied. EC control strategies were fully bleached at all times, modulated based on incident vertical solar radiation limits, or modulated to meet the design work plane illuminance with daylight. The EC performance was compared to a state-of-the-art spectrally selective low-e window with the same divided window wall, window size, and overhang as the EC configuration. The reference window was also combined with an interior shade which was manually deployed to control glare and direct sun. Both systems had the same daylighting control system to dim the electric lighting. Results were given for south-facing private offices in a typical commercialmore » building. In hot and cold climates such as Houston and Chicago, EC windows with overhangs can significantly reduce the average annual daylight glare index (DGI) and deliver significant annual energy use savings if the window area is large. Total primary annual energy use was increased by 2-5% for moderate-area windows in either climate but decreased by 10% in Chicago and 5% in Houston for large-area windows. Peak electric demand can be reduced by 7-8% for moderate-area windows and by 14-16% for large-area windows in either climate. Energy and peak demand reductions can be significantly greater if the reference case does not have exterior shading or state-of-the-art glass.« less

Authors:
;
Publication Date:
Research Org.:
Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US)
Sponsoring Org.:
USDOE. Assistant Secretary of Energy Efficiency andRenewable Energy. Office of Building Technologies; Scientific ResearchCouncil of Turkey (TUBITAK) through NATO-B2 FellowshipProgram
OSTI Identifier:
924851
Report Number(s):
LBNL-59064
Journal ID: ISSN 0360-1323; BUENDB; R&D Project: 0; BnR: YN0100000; TRN: US200809%%592
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Building and Environment; Journal Volume: 42; Journal Issue: 6; Related Information: Journal Publication Date: June 2007
Country of Publication:
United States
Language:
English
Subject:
32; APERTURES; CLIMATES; COMMERCIAL BUILDINGS; CONFIGURATION; CONTROL SYSTEMS; DAYLIGHTING; DESIGN; ENERGY EFFICIENCY; GLASS; ILLUMINANCE; PERFORMANCE; SHADING; SOLAR RADIATION; SUN; WINDOWS

Citation Formats

Lee, E.S., and Tavil, A. Energy and visual comfort performance of electrochromic windowswith overhangs. United States: N. p., 2005. Web.
Lee, E.S., & Tavil, A. Energy and visual comfort performance of electrochromic windowswith overhangs. United States.
Lee, E.S., and Tavil, A. Thu . "Energy and visual comfort performance of electrochromic windowswith overhangs". United States. doi:. https://www.osti.gov/servlets/purl/924851.
@article{osti_924851,
title = {Energy and visual comfort performance of electrochromic windowswith overhangs},
author = {Lee, E.S. and Tavil, A.},
abstractNote = {DOE-2 building energy simulations were conducted to determine if there were practical architectural and control strategy solutions that would enable electrochromic (EC) windows to significantly improve visual comfort without eroding energy-efficiency benefits. EC windows were combined with overhangs since opaque overhangs provide protection from direct sun which EC windows are unable to do alone. The window wall was divided into an upper and lower aperture so that various combinations of overhang position and control strategies could be considered. The overhang was positioned either at the top of the upper window aperture or between the upper and lower apertures. Overhang depth was varied. EC control strategies were fully bleached at all times, modulated based on incident vertical solar radiation limits, or modulated to meet the design work plane illuminance with daylight. The EC performance was compared to a state-of-the-art spectrally selective low-e window with the same divided window wall, window size, and overhang as the EC configuration. The reference window was also combined with an interior shade which was manually deployed to control glare and direct sun. Both systems had the same daylighting control system to dim the electric lighting. Results were given for south-facing private offices in a typical commercial building. In hot and cold climates such as Houston and Chicago, EC windows with overhangs can significantly reduce the average annual daylight glare index (DGI) and deliver significant annual energy use savings if the window area is large. Total primary annual energy use was increased by 2-5% for moderate-area windows in either climate but decreased by 10% in Chicago and 5% in Houston for large-area windows. Peak electric demand can be reduced by 7-8% for moderate-area windows and by 14-16% for large-area windows in either climate. Energy and peak demand reductions can be significantly greater if the reference case does not have exterior shading or state-of-the-art glass.},
doi = {},
journal = {Building and Environment},
number = 6,
volume = 42,
place = {United States},
year = {Thu Nov 03 00:00:00 EST 2005},
month = {Thu Nov 03 00:00:00 EST 2005}
}
  • A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled.more » With hourly blind position adjustments, electrochromics showed significantly higher (62percent and 53percent, respectively without and with overhang) lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48percent and 37percent, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.« less
  • A 20-month field study was conducted to measure the energy performance of south-facing large-area tungsten-oxide absorptive electrochromic (EC) windows with a broad switching range in a private office setting. The EC windows were controlled by a variety of means to bring in daylight while minimizing window glare. For some cases, a Venetian blind was coupled with the EC window to block direct sun. Some tests also involved dividing the EC window wall into zones where the upper EC zone was controlled to admit daylight while the lower zone was controlled to prevent glare yet permit view. If visual comfort requirementsmore » are addressed by EC control and Venetian blinds, a 2-zone EC window configuration provided average daily lighting energy savings of 10 {+-} 15% compared to the reference case with fully lowered Venetian blinds. Cooling load reductions were 0 {+-} 3%. If the reference case assumes no daylighting controls, lighting energy savings would be 44 {+-} 11%. Peak demand reductions due to window cooling load, given a critical demand-response mode, were 19-26% maximum on clear sunny days. Peak demand reductions in lighting energy use were 0% or 72-100% compared to a reference case with and without daylighting controls, respectively. Lighting energy use was found to be very sensitive to how glare and sun is controlled. Additional research should be conducted to fine-tune EC control for visual comfort based on solar conditions so as to increase lighting energy savings.« less
  • No abstract prepared.