skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 31 Flavors of Drosophila Rab proteins

Abstract

Rab proteins are small GTPases that play important roles intransport of vesicle cargo and recruitment, association of motor andother proteins with vesicles, and docking and fusion of vesicles atdefined locations. In vertebrates, more than 75 Rab genes have beenidentified, some of which have been intensively studied for their rolesin endosome and synaptic vesicle trafficking. Recent studies of thefunctions of certain Rab proteins have revealed specific roles inmediating developmental signal transduction. We have begun a systematicgenetic study of the 33 Rab genes in Drosophila. Most of the fly proteinsare clearly related to specific vertebrate proteins. We report here thecreation of a set of transgenic fly lines that allow spatially andtemporally regulated expression of Drosophila Rab proteins. We generatedfluorescent protein-tagged wild-type, dominant-negative, andconstitutively active forms of 31 Drosophila Rab proteins. We describeDrosophila Rab expression patterns during embryogenesis, the subcellularlocalization of some Rab proteins, and comparisons of the localization ofwild-type, dominant-negative, and constitutively active forms of selectedRab proteins. The high evolutionary conservation and low redundancy ofDrosophila Rab proteins make these transgenic lines a useful toolkit forinvestigating Rab functions in vivo.

Authors:
; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
COLLABORATION - StanfordU.
OSTI Identifier:
923469
Report Number(s):
LBNL-62588
Journal ID: ISSN 0016-6731; GENTAE; R&D Project: L0111; BnR: 600305000; TRN: US200804%%1177
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Genetics; Journal Volume: 176; Journal Issue: 2; Related Information: Journal Publication Date: 06/2007
Country of Publication:
United States
Language:
English
Subject:
59; CARGO; DROSOPHILA; GENES; GENETICS; IN VIVO; MOTORS; PROTEINS; REDUNDANCY; TRANSPORT; VERTEBRATES

Citation Formats

Zhang, Jun, Schulze, Karen L., Hiesinger, P. Robin, Suyama, Kaye, Wang, Stream, Fish, Matthew, Acar, Melih, Hoskins, Roger A., Bellen, HugoJ., and Scott, Matthew P.. 31 Flavors of Drosophila Rab proteins. United States: N. p., 2007. Web.
Zhang, Jun, Schulze, Karen L., Hiesinger, P. Robin, Suyama, Kaye, Wang, Stream, Fish, Matthew, Acar, Melih, Hoskins, Roger A., Bellen, HugoJ., & Scott, Matthew P.. 31 Flavors of Drosophila Rab proteins. United States.
Zhang, Jun, Schulze, Karen L., Hiesinger, P. Robin, Suyama, Kaye, Wang, Stream, Fish, Matthew, Acar, Melih, Hoskins, Roger A., Bellen, HugoJ., and Scott, Matthew P.. Tue . "31 Flavors of Drosophila Rab proteins". United States. doi:.
@article{osti_923469,
title = {31 Flavors of Drosophila Rab proteins},
author = {Zhang, Jun and Schulze, Karen L. and Hiesinger, P. Robin and Suyama, Kaye and Wang, Stream and Fish, Matthew and Acar, Melih and Hoskins, Roger A. and Bellen, HugoJ. and Scott, Matthew P.},
abstractNote = {Rab proteins are small GTPases that play important roles intransport of vesicle cargo and recruitment, association of motor andother proteins with vesicles, and docking and fusion of vesicles atdefined locations. In vertebrates, more than 75 Rab genes have beenidentified, some of which have been intensively studied for their rolesin endosome and synaptic vesicle trafficking. Recent studies of thefunctions of certain Rab proteins have revealed specific roles inmediating developmental signal transduction. We have begun a systematicgenetic study of the 33 Rab genes in Drosophila. Most of the fly proteinsare clearly related to specific vertebrate proteins. We report here thecreation of a set of transgenic fly lines that allow spatially andtemporally regulated expression of Drosophila Rab proteins. We generatedfluorescent protein-tagged wild-type, dominant-negative, andconstitutively active forms of 31 Drosophila Rab proteins. We describeDrosophila Rab expression patterns during embryogenesis, the subcellularlocalization of some Rab proteins, and comparisons of the localization ofwild-type, dominant-negative, and constitutively active forms of selectedRab proteins. The high evolutionary conservation and low redundancy ofDrosophila Rab proteins make these transgenic lines a useful toolkit forinvestigating Rab functions in vivo.},
doi = {},
journal = {Genetics},
number = 2,
volume = 176,
place = {United States},
year = {Tue Apr 03 00:00:00 EDT 2007},
month = {Tue Apr 03 00:00:00 EDT 2007}
}
  • Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less
  • Rab proteins constitute a family of GTP-binding proteins that are located in distinct intracellular compartments and play a role in the regulation of vesicular trafficking. Yeast mutations in Rab gene homologs cause defects in vesicular transport similar to those observed in beige (bg) mice. To investigate Rab genes as candidates for mouse mutations characterized by defects in vesicular trafficking, we utilized an intersubspecific backcross [C57BL/6J-bg{sup J} X (C57BL/6J-bg{sup J} X CAST/Ei)F{sub 1}] segregating for the bg locus. Restriction fragment length polymorphisms (RFLPs) were obtained through Southern hybridization of F{sub 1} and C57BL/6J chromosomal DNA with the coding sequences of Rabmore » genes. These RFLPs and 12 polymorphic microsatellites were used to determine the segregation of the Rab genes in 93 backcross mice. Rab4a, Rab4b, Rab7, Rab10, Rab22, and Rab24 were localized on mouse chromosomes 8, 7, 9, 12, 2, and 13, respectively. Although the results exclude these loci as candidates for bg, they demonstrate a wide dispersion of Rab genes throughout the mouse genome and reveal that Rab4b and Rab24 are possible candidates for the mouse mutations reduced pigmentation (rp) and purkinje cell degeneration (pcd), respectively. 31 refs., 3 figs., 2 tabs.« less
  • An improved method of high-resolution two-dimensional gel electrophoresis has been used to study the patterns of protein synthesis in wing imaginal discs of late instar larvae of Drosophila melanogaster. A small number of discs were radiolabeled with a mixture of {sup 14}C-labeled amino acids or with ({sup 35}S)methionine and the pattern of labeled proteins was analyzed. One thousand and twenty-five polypeptides (787 acidic (IEF) and 238 basic (NEPHGE)) from wing discs of several wild-type strains have so far been separated and cataloged. All these polypeptides have been numbered and presented in a reference map for further studies. When comparing patternsmore » of label we have found small quantitative differences in rate of synthesis between individuals of the same strain, not due to sexual differences, and very few quantitative and qualitative differences between groups of individuals of different strains.« less
  • A method based on the transcriptional activation of a selectable reporter in yeast cells was used to identify genes regulated by the Utrabithorax homeoproteins in Drosophila melanogaster. Fifty-three DNA fragments that can mediate activation by UBX isoform Ia in this test were recovered after screening 15% of the Drosophila genome. Half of these fragments represent single-copy sequences in the genome. Six single-copy fragments were investigated in detail, and each was found to reside near a transcription unit whose expression in the embryo is segmentally modulated as expected for targets of homeotic genes. Four of these putative target genes are expressedmore » in patterns that suggest roles in the development of regional specializations within mesoderm derivatives; in three cases these expression patterns depend on Ultrabithorax function. Extrapolation from this pilot study indicates that 85-170 candidate target genes can be identified by screening the entire Drosophila genome with UBX isoform Ia. With appropriate modifications, this approach should be applicable to other transcriptional regulators in diverse organisms. 69 refs., 9 figs., 2 tabs.« less