skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cellular Response of Shewanella oneidensis to StrontiumStress

Abstract

The physiology and transcriptome dynamics of the metalion-reducing bacterium Shewanella oneidensis strain MR-1 in response tononradioactive strontium (Sr) exposure were investigated. Studiesindicated that MR-1 was able to grow aerobically in complex medium in thepresence of 180 mMSrCl2 but showed severe growth inhibition at levelsabove that concentration. Temporal gene expression profiles weregenerated from aerobically grown, mid-exponential-phase MR-1 cellsshocked with 180 mM SrCl2 and analyzed for significant differences inmRNA abundance with reference to data for nonstressed MR-1 cells. Geneswith annotated functions in siderophore biosynthesis and iron transportwere among the most highly induced (>100-fold [P<0.05]) openreading frames in response to acute Sr stress, and a mutant(SO3032::pKNOCK) defective in siderophore production was found to behypersensitive to SrCl2 exposure, compared to parental and wild-typestrains. Transcripts encoding multidrug and heavy metal efflux pumps,proteins involved in osmotic adaptation, sulfate ABC transporters, andassimilative sulfur metabolism enzymes also were differentially expressedfollowing Sr exposure but at levels that were several orders of magnitudelower than those for iron transport genes. Precipitate formation wasobserved during aerobic growth of MR-1 in broth cultures amended with 50,100, or 150 mM SrCl2 but not in cultures of the SO3032::pKNOCK mutant orin the abiotic control. Chemical analysis of this precipitate usinglaser-induced breakdown spectroscopy and static secondarymore » ion massspectrometry indicated extracellular solid-phase sequestration of Sr,with at least a portion of the heavy metal associated with carbonatephases.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
COLLABORATION - ORNL
OSTI Identifier:
922807
Report Number(s):
LBNL-60417
Journal ID: ISSN 0099-2240; AEMIDF; R&D Project: VGTLAA; BnR: KP1102010; TRN: US200803%%534
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied and Environmental Microbiology; Journal Volume: 72; Journal Issue: 1; Related Information: Journal Publication Date: January,2006
Country of Publication:
United States
Language:
English
Subject:
59; BIOSYNTHESIS; CARBONATES; CHEMICAL ANALYSIS; ENZYMES; GENES; HEAVY METALS; INHIBITION; IRON; MASS SPECTROSCOPY; METABOLISM; MUTANTS; PHYSIOLOGY; PROTEINS; SPECTROSCOPY; STRONTIUM; SULFATES; SULFUR; Bioremediation Stress Response Transcriptomics

Citation Formats

Brown, Steven D., Martin, Madhavi, Deshpande, Sameer, Seal,Sudipta, Huang, Katherine, Alm, Eric, Yang, Yunfeng, Wu, Liyou, Yan,Tengfen, Liu, Xueduan, Arkin, Adam, Chourey, Karuna, Zhou, Jizhong, and Thompson, Dorothea K. Cellular Response of Shewanella oneidensis to StrontiumStress. United States: N. p., 2007. Web.
Brown, Steven D., Martin, Madhavi, Deshpande, Sameer, Seal,Sudipta, Huang, Katherine, Alm, Eric, Yang, Yunfeng, Wu, Liyou, Yan,Tengfen, Liu, Xueduan, Arkin, Adam, Chourey, Karuna, Zhou, Jizhong, & Thompson, Dorothea K. Cellular Response of Shewanella oneidensis to StrontiumStress. United States.
Brown, Steven D., Martin, Madhavi, Deshpande, Sameer, Seal,Sudipta, Huang, Katherine, Alm, Eric, Yang, Yunfeng, Wu, Liyou, Yan,Tengfen, Liu, Xueduan, Arkin, Adam, Chourey, Karuna, Zhou, Jizhong, and Thompson, Dorothea K. Fri . "Cellular Response of Shewanella oneidensis to StrontiumStress". United States. doi:.
@article{osti_922807,
title = {Cellular Response of Shewanella oneidensis to StrontiumStress},
author = {Brown, Steven D. and Martin, Madhavi and Deshpande, Sameer and Seal,Sudipta and Huang, Katherine and Alm, Eric and Yang, Yunfeng and Wu, Liyou and Yan,Tengfen and Liu, Xueduan and Arkin, Adam and Chourey, Karuna and Zhou, Jizhong and Thompson, Dorothea K.},
abstractNote = {The physiology and transcriptome dynamics of the metalion-reducing bacterium Shewanella oneidensis strain MR-1 in response tononradioactive strontium (Sr) exposure were investigated. Studiesindicated that MR-1 was able to grow aerobically in complex medium in thepresence of 180 mMSrCl2 but showed severe growth inhibition at levelsabove that concentration. Temporal gene expression profiles weregenerated from aerobically grown, mid-exponential-phase MR-1 cellsshocked with 180 mM SrCl2 and analyzed for significant differences inmRNA abundance with reference to data for nonstressed MR-1 cells. Geneswith annotated functions in siderophore biosynthesis and iron transportwere among the most highly induced (>100-fold [P<0.05]) openreading frames in response to acute Sr stress, and a mutant(SO3032::pKNOCK) defective in siderophore production was found to behypersensitive to SrCl2 exposure, compared to parental and wild-typestrains. Transcripts encoding multidrug and heavy metal efflux pumps,proteins involved in osmotic adaptation, sulfate ABC transporters, andassimilative sulfur metabolism enzymes also were differentially expressedfollowing Sr exposure but at levels that were several orders of magnitudelower than those for iron transport genes. Precipitate formation wasobserved during aerobic growth of MR-1 in broth cultures amended with 50,100, or 150 mM SrCl2 but not in cultures of the SO3032::pKNOCK mutant orin the abiotic control. Chemical analysis of this precipitate usinglaser-induced breakdown spectroscopy and static secondary ion massspectrometry indicated extracellular solid-phase sequestration of Sr,with at least a portion of the heavy metal associated with carbonatephases.},
doi = {},
journal = {Applied and Environmental Microbiology},
number = 1,
volume = 72,
place = {United States},
year = {Fri Mar 30 00:00:00 EDT 2007},
month = {Fri Mar 30 00:00:00 EDT 2007}
}
  • Stability and resilience against environmental perturbations are critical properties of medical and environmental biofilms and pose important targets for their control. Biofilm stability is determined by two mutually exclusive processes: attachment of cells to and detachment from the biofilm matrix. Using Shewanella oneidensis MR-1, an environmentally versatile, Fe(III) and Mn(IV) mineral -reducing microorganism, we identified mxdABCD as a new set of genes essential for formation of a three-dimensional biofilm. Molecular analysis revealed that mxdA encodes a cyclic bis(3',5')guanylic acid (cyclic di-GMP)-forming enzyme with an unusual GGDEF motif, i.e., NVDEF, which is essential for its function. mxdB encodes a putative membrane-associatedmore » glycosyl transferase. Both genes are essential for matrix attachment. The attachment-deficient phenotype of a Delta mxdA mutant was rescued by ectopic expression of VCA0956, encoding another diguanylate cyclase. Interestingly, a rapid cellular detachment from the biofilm occurred upon induction of yhjH, a gene encoding an enzyme that has been shown to have phosphodiesterase activity. In this way, it was possible to bypass the previously identified sudden depletion of molecular oxygen as an environmental trigger to induce biofilm dissolution. We propose a model for c-di-GMP as a key intracellular regulator for controlling biofilm stability by shifting the state of a biofilm cell between attachment and detachment in a concentration-dependent manner.« less
  • Temporal genomic profiling and whole-cell proteomic analyseswere performed to characterize the dynamic molecular response of themetal-reducing bacterium Shewanella oneidensis MR-1 to an acute chromateshock. The complex dynamics of cellular processes demand the integrationof methodologies that describe biological systems at the levels ofregulation, gene and protein expression, and metabolite production.Genomic microarray analysis of the transcriptome dynamics ofmidexponential phase cells subjected to 1 mM potassium chromate (K2CrO4)at exposure time intervals of 5, 30, 60, and 90 min revealed 910 genesthat were differentially expressed at one or more time points. Stronglyinduced genes included those encoding components of a TonB1 irontransport system (tonB1-exbB1-exbD1), heminmore » ATP-binding cassettetransporters (hmuTUV), TonB-dependent receptors as well as sulfatetransporters (cysP, cysW-2, and cysA-2), and enzymes involved inassimilative sulfur metabolism (cysC, cysN, cysD, cysH, cysI, and cysJ).Transcript levels for genes with annotated functions in DNA repair (lexA,recX, recA, recN, dinP, and umuD), cellular detoxification (so1756,so3585, and so3586), and two-component signal transduction systems(so2426) were also significantly up-regulated (p<0.05) inCr(VI)-exposed cells relative to untreated cells. By contrast, genes withfunctions linked to energy metabolism, particularly electron transport(e.g. so0902-03-04, mtrA, omcA, and omcB), showed dramatic temporalalterations in expression with the majority exhibiting repression.Differential proteomics based on multidimensional HPLC-MS/MS was used tocomplement the transcriptome data, resulting in comparable induction andrepression patterns for a subset of corresponding proteins. In total,expression of 2,370 proteins were confidently verified with 624 (26percent) of these annotated as hypothetical or conserved hypotheticalproteins. The initial response of S. oneidensis to chromate shock appearsto require a combination of different regulatory networks that involvegenes with annotated functions in oxidative stress protection,detoxification, protein stress protection, iron and sulfur acquisition,and SOS-controlled DNA repair mechanisms.« less
  • Temporal genomic profiling and whole-cell proteomic analyses were performed to characterize the dynamic molecular response of the metal-reducing bacterium Shewanella oneidensis MR-1 to an acute chromate shock. The complex dynamics of cellular processes demand the integration of methodologies that describe biological systems at the levels of regulation, gene and protein expression, and metabolite production. Genomic microarray analysis of the transcriptome dynamics of midexponential phase cells subjected to 1 mM potassium chromate (K2CrO4) at exposure time intervals of 5, 30, 60, and 90 min revealed 910 genes that were differentially expressed at one or more time points. Strongly induced genes includedmore » those encoding components of a TonB1 iron transport system (tonB1-exbB1-exbD1), hemin ATP-binding cassette transporters (hmuTUV), TonB-dependent receptors as well as sulfate transporters (cysP, cysW-2, and cysA-2), and enzymes involved in assimilative sulfur metabolism (cysC, cysN, cysD, cysH, cysI, and cysJ). Transcript levels for genes with annotated functions in DNA repair (lexA, recX, recA, recN, dinP, and umuD), cellular detoxification (so1756, so3585, and so3586), and two-component signal transduction systems (so2426) were also significantly upregulated (p < 0.05) in Cr(VI)-exposed cells relative to untreated cells. By contrast, genes with functions linked to energy metabolism, particularly electron transport (e.g. so0902-03-04, mtrA, omcA, and omcB), showed dramatic temporal alterations in expression with the majority exhibiting repression. Differential proteomics based on multidimensional HPLC-MS/MS was used to complement the transcriptome data, resulting in comparable induction and repression patterns for a subset of corresponding proteins. In total, expression of 2,370 proteins were confidently verified with 624 (26%) of these annotated as hypothetical or conserved hypothetical proteins. The initial response of S. oneidensis to chromate shock appears to require a combination of different regulatory networks that involve genes with annotated functions in oxidative stress protection, detoxification, protein stress protection, iron and sulfur acquisition, and SOS-controlled DNA repair mechanisms. Molecular & Cellular Proteomics 5: 1054-1071, 2006.« less
  • Microbes are known to regulate both gene expression and protein activity through the use of post-translational modifications (PTMs). Common PTMs involved in cellular signaling and gene control include methylations, acetylations, and phosphorylations; whereas oxidations have been implicated as an indicator for stress. Shewanella oneidensis MR-1 is a gram-negative bacterium that demonstrates both respiratory versatility and the ability to sense and adapt to diverse environmental conditions. The dataset used in this study consisted of tandem mass spectra derived from mid-log phase aerobic cultures of S. oneidensis shocked either with or without 1 mM chromate [Cr(VI)]. In this study, three algorithms (DBDigger,more » Sequest, and InsPecT) were evaluated for their ability to scrutinize shotgun proteomic data for evidence of PTMs. The use of conservative scoring filters for peptides or proteins versus creating a sub-database first from a non-modification search was evaluated with DBDigger. The use of higher scoring filters for peptide identifications was found to result in optimal identifications of PTM peptides with a 2% false discovery rate (FDR) for the total dataset using the DBDigger algorithm. However, the FDR climbs to about 50% when considering PTM peptides only. Sequest was evaluated as a method for confirming PTM peptides putatively identified using DBDigger; however, there was a low identification rate (~25%) for the searched spectra. InsPecT was found to have a lower FDR (~9%) than DBDigger for PTM peptides. Comparisons between InsPecT and DBDigger were made with respect to both the FDR and PTM peptide identifications. As a demonstration of this approach, a number of S. oneidensis chemotaxis proteins as well as low-abundance signal transduction proteins were identified as being post-translationally modified in response to chromate challenge.« less
  • Proteome alterations in the metal-reducing bacterium Shewanella oneidensis MR-1 in response to different acute dose challenges (0.3, 0.5, or 1 mM) of the toxic metal chromate [Cr(VI)] were characterized with multidimensional HPLC-MS/MS on a linear trapping quadrupole MS. A total of 2,406 functionally diverse proteins were identified, with a subset demonstrating dosage-dependent up- and down-regulated expression, such as proteins involved in detoxification and iron binding and transport.